Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.

K. Khadra; Ph. Angot; J. P. Caltagirone; P. Morel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 1, page 39-82
  • ISSN: 0764-583X

How to cite

top

Khadra, K., et al. "Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.1 (1996): 39-82. <http://eudml.org/doc/193798>.

@article{Khadra1996,
author = {Khadra, K., Angot, Ph., Caltagirone, J. P., Morel, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {adaptive zoom concept; local multigrid architecture; error bound; convergence; local defect correction; fast adaptive composite; flux interface correction},
language = {fre},
number = {1},
pages = {39-82},
publisher = {Dunod},
title = {Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.},
url = {http://eudml.org/doc/193798},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Khadra, K.
AU - Angot, Ph.
AU - Caltagirone, J. P.
AU - Morel, P.
TI - Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 1
SP - 39
EP - 82
LA - fre
KW - adaptive zoom concept; local multigrid architecture; error bound; convergence; local defect correction; fast adaptive composite; flux interface correction
UR - http://eudml.org/doc/193798
ER -

References

top
  1. [1] Ph. ANGOT et J. P. CALTAGIRONE, 1988, Homogénéisation numérique en thermique des structures hétérogènes périodiques, Actes EUROTHERM n°4, Nancy, pp. 122-126. 
  2. [2] Ph. ANGOT, 1989, Contribution à l'étude des transferts thermiques dans des systèmes complexes; Application aux composants électroniques, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mécanique. 
  3. [3] Ph. ANGOT and J. P. CALTAGIRONE, 1990, New graphical and computational architecture concept for numerical simulation on supercomputers, Proc, 2-nd World Congress on Computational Mechanics, Stuttgart, pp. 973-976. 
  4. [4] Ph. ANGOT, J. P. CALTAGIRONE et K. KHADRA, 1992, Une méthode adaptative de raffinement local : la Correction du Flux à l'Interface, C. R. Acad. Sci. Paris, 315, Série I, pp.739-745. Zbl0755.65120MR1183814
  5. [5] Ph. ANGOT, J. P. CALTAGIRONE, K. KHADRA et P. MOREL, 1992, Concept de zoom en architecture de calcul; Etude comparative de trois méthodes adaptatives de raffinement local : L.D.C., F.A.C. et F.I.C., Rapport interne IMST 92-04, juin. 
  6. [6] Ph. ANGOT, 1994, Parallel multi-level and domain decomposition methods, Calculateurs parallèles, L.T.CP, 6, pp. 9-14. 
  7. [7] Ph. ANGOT et M. LAUGIER, 1994, La méthode F.I.C, de raccordement conservatif de sous-domaines emboîtés pour un modèle de circulation océanique, C. R. Acad.Sci. Paris, 319, Série II, pp. 993-1000. 
  8. [8] Ph. ANGOT and M. LAUGIER, 1995, Conservative matching of non-conforming grids on nested subdomains; Application to an ocean circulation model, Comput. Meth. Appl. Mech. Engrg., soumis. 
  9. [9] D. BAI and A. BRANDT, 1987, Local mesh refinement muitilevel techniques, SIAM J. Sci.Stat Comput, 8, pp. 109-134. Zbl0619.65091MR879406
  10. [10] R. E. BANK and A. WEISER, 1985, Some a posteriori error estimates for elliptic partial differential equations, Math. Comp., 44, pp. 283-301. Zbl0569.65079MR777265
  11. [11] R. E. BANK, 1986, A posteriori error estimates, adaptive local mesh refinement and multigrid iteration, Lecture Notes in Mathematics, W. Hackbusch and UTrottenberg, eds., Springer-Verlag, 1228,pp. 7-23. Zbl0619.65092MR896055
  12. [12] R. E. BANK, T. F. DUPONT and H. YSERENTANT, 1988, The hierarchical basis multigrid methods, Numer. Math., 52, pp.427-458 Zbl0645.65074MR932709
  13. [13] M. J. BERGER and J. OLIGER, 1984, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput Phys., 53, pp.484-512. Zbl0536.65071MR739112
  14. [14] C. BERNARDI, Y. MADAY and A. PATERA, 1989, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear Partial Differential Equations and their Applications, H, Brezis and J. L. Lions, eds., Pitman Research. Zbl0797.65094
  15. [15] P. E. BJORSTAD and O. B. WIDLUND, 1986, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal, 23, pp. 1097-1120. Zbl0615.65113MR865945
  16. [16] J. H. BRAMBLE, J. E. PASCIAK and A. H. SCHATZ, 1986, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp,, 46,pp. 361-369. Zbl0595.65111MR829613
  17. [17] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, 1988, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput Meth. Appl. Mech, Engrg,, 67, pp. 149-159. Zbl0619.76113
  18. [18] J. H. BRAMBLE, J. E. PASCIAK and J. XU, 1990, Parallel multilevel preconditioners, Math. Comp., 55, pp. 1-22. Zbl0703.65076MR1023042
  19. [19] A. BRANDT, 1973, Multi-Level Adaptive Techniques (MLAT) for fast numerical solution to boundary value problems, Lecture Notes in Physics, H. Cabannes and R. Temam, eds., Springer-Verlag, 18, pp. 82-89. Zbl0259.76013
  20. [20] A. BRANDT, 1977, Multi-level adaptive solution to boundary-value problems, Math. Comp., 31, pp.333-390. Zbl0373.65054MR431719
  21. [21] J. P. CALTAGIRONE, K. KHADRA et Ph. ANGOT, 1995, Sur une méthode de raffinement local multigrille pour la résolution des équations de Navier-Stokes, CR. Acad. Sci Paris, 320, Série IIb, pp. 295-302. Zbl0834.76065
  22. [22] M. EL GANAOUI, 1993, Etude de schémas multigrilles adaptatifs pour un problème d'advection-diffusion, D.E.A. de Mécanique, Université Aix-Marseille II,juillet. 
  23. [23] W. HACKBUSCH and U. TRQTTENBERG, 1982, eds., Multigrid Methods, Lecture Notes in Mathematics, 960, Springer-Verlag. MR685772
  24. [24] W. HACKBUSCH, 1984, Local Defect Correction Method and Domain Decomposition Techniques, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 89-113. Zbl0552.65070MR782692
  25. [25] W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Series in Computational Mathematics, Springer-Verlag. Zbl0595.65106
  26. [26] K. KHADRA, Ph. ANGOT and J. P. CALTAGIRONE, 1993, A comparison of locally adaptive multigrid methods ; L.D.C., F.A.C, and F.I.C., NASA Conf.Publ 3224, 6th Copper Mountain Conference on Multigrid Methods, N. D. Melson, S. F. McCormick and T. A. Manteuffel, eds., 1, pp.275-292. 
  27. [27] K. KHADRA, 1994, Méthodes adaptatives de raffinement local multigrille; Applications aux équations de Navier-Stokes et de l'énergie, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mathématiques Appliquées, mars. 
  28. [28] P. LE TALLEC, 1994, Domain decomposition methods in computational mechanics, Comput. Mech. Adv., 1, pp. 121-220. Zbl0802.73079MR1263805
  29. [29] S. F. MCCORMICK, 1984, Fast Adaptive Composite Grid (F.A.C.) Methods : theory for the variational case, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 115-121. Zbl0552.65071MR782693
  30. [30] S. F. MCCORMICK, ed., 1987, Multigrid Methods, Frontiers in Appl., Math., 3, SIAM, Philadelphie Zbl0659.65094MR972752
  31. [31] S. F. MCCORMICK, 1989, Multilevel adaptive methods for partial differential equations, Frontiers in Appl. Math,, 6, SIAM, Philadelphia. Zbl0707.65080MR1056696
  32. [32] S. V. PATANKAR, 1980, Numerical heat transfer and fluid flow, Hemisphère Publishing Corporation, New-York. Zbl0521.76003
  33. [33] U. RÜDE, 1993, Fully adaptive multigrid methods, SIAM J. Numer. AnaL, 30,pp. 230-248. Zbl0849.65090MR1202664
  34. [34] J. XU, 1992, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, pp, 581-613. Zbl0788.65037MR1193013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.