Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.
K. Khadra; Ph. Angot; J. P. Caltagirone; P. Morel
- Volume: 30, Issue: 1, page 39-82
- ISSN: 0764-583X
Access Full Article
topHow to cite
topKhadra, K., et al. "Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.1 (1996): 39-82. <http://eudml.org/doc/193798>.
@article{Khadra1996,
author = {Khadra, K., Angot, Ph., Caltagirone, J. P., Morel, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {adaptive zoom concept; local multigrid architecture; error bound; convergence; local defect correction; fast adaptive composite; flux interface correction},
language = {fre},
number = {1},
pages = {39-82},
publisher = {Dunod},
title = {Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.},
url = {http://eudml.org/doc/193798},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Khadra, K.
AU - Angot, Ph.
AU - Caltagirone, J. P.
AU - Morel, P.
TI - Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C.
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 1
SP - 39
EP - 82
LA - fre
KW - adaptive zoom concept; local multigrid architecture; error bound; convergence; local defect correction; fast adaptive composite; flux interface correction
UR - http://eudml.org/doc/193798
ER -
References
top- [1] Ph. ANGOT et J. P. CALTAGIRONE, 1988, Homogénéisation numérique en thermique des structures hétérogènes périodiques, Actes EUROTHERM n°4, Nancy, pp. 122-126.
- [2] Ph. ANGOT, 1989, Contribution à l'étude des transferts thermiques dans des systèmes complexes; Application aux composants électroniques, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mécanique.
- [3] Ph. ANGOT and J. P. CALTAGIRONE, 1990, New graphical and computational architecture concept for numerical simulation on supercomputers, Proc, 2-nd World Congress on Computational Mechanics, Stuttgart, pp. 973-976.
- [4] Ph. ANGOT, J. P. CALTAGIRONE et K. KHADRA, 1992, Une méthode adaptative de raffinement local : la Correction du Flux à l'Interface, C. R. Acad. Sci. Paris, 315, Série I, pp.739-745. Zbl0755.65120MR1183814
- [5] Ph. ANGOT, J. P. CALTAGIRONE, K. KHADRA et P. MOREL, 1992, Concept de zoom en architecture de calcul; Etude comparative de trois méthodes adaptatives de raffinement local : L.D.C., F.A.C. et F.I.C., Rapport interne IMST 92-04, juin.
- [6] Ph. ANGOT, 1994, Parallel multi-level and domain decomposition methods, Calculateurs parallèles, L.T.CP, 6, pp. 9-14.
- [7] Ph. ANGOT et M. LAUGIER, 1994, La méthode F.I.C, de raccordement conservatif de sous-domaines emboîtés pour un modèle de circulation océanique, C. R. Acad.Sci. Paris, 319, Série II, pp. 993-1000.
- [8] Ph. ANGOT and M. LAUGIER, 1995, Conservative matching of non-conforming grids on nested subdomains; Application to an ocean circulation model, Comput. Meth. Appl. Mech. Engrg., soumis.
- [9] D. BAI and A. BRANDT, 1987, Local mesh refinement muitilevel techniques, SIAM J. Sci.Stat Comput, 8, pp. 109-134. Zbl0619.65091MR879406
- [10] R. E. BANK and A. WEISER, 1985, Some a posteriori error estimates for elliptic partial differential equations, Math. Comp., 44, pp. 283-301. Zbl0569.65079MR777265
- [11] R. E. BANK, 1986, A posteriori error estimates, adaptive local mesh refinement and multigrid iteration, Lecture Notes in Mathematics, W. Hackbusch and UTrottenberg, eds., Springer-Verlag, 1228,pp. 7-23. Zbl0619.65092MR896055
- [12] R. E. BANK, T. F. DUPONT and H. YSERENTANT, 1988, The hierarchical basis multigrid methods, Numer. Math., 52, pp.427-458 Zbl0645.65074MR932709
- [13] M. J. BERGER and J. OLIGER, 1984, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput Phys., 53, pp.484-512. Zbl0536.65071MR739112
- [14] C. BERNARDI, Y. MADAY and A. PATERA, 1989, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear Partial Differential Equations and their Applications, H, Brezis and J. L. Lions, eds., Pitman Research. Zbl0797.65094
- [15] P. E. BJORSTAD and O. B. WIDLUND, 1986, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal, 23, pp. 1097-1120. Zbl0615.65113MR865945
- [16] J. H. BRAMBLE, J. E. PASCIAK and A. H. SCHATZ, 1986, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp,, 46,pp. 361-369. Zbl0595.65111MR829613
- [17] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, 1988, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput Meth. Appl. Mech, Engrg,, 67, pp. 149-159. Zbl0619.76113
- [18] J. H. BRAMBLE, J. E. PASCIAK and J. XU, 1990, Parallel multilevel preconditioners, Math. Comp., 55, pp. 1-22. Zbl0703.65076MR1023042
- [19] A. BRANDT, 1973, Multi-Level Adaptive Techniques (MLAT) for fast numerical solution to boundary value problems, Lecture Notes in Physics, H. Cabannes and R. Temam, eds., Springer-Verlag, 18, pp. 82-89. Zbl0259.76013
- [20] A. BRANDT, 1977, Multi-level adaptive solution to boundary-value problems, Math. Comp., 31, pp.333-390. Zbl0373.65054MR431719
- [21] J. P. CALTAGIRONE, K. KHADRA et Ph. ANGOT, 1995, Sur une méthode de raffinement local multigrille pour la résolution des équations de Navier-Stokes, CR. Acad. Sci Paris, 320, Série IIb, pp. 295-302. Zbl0834.76065
- [22] M. EL GANAOUI, 1993, Etude de schémas multigrilles adaptatifs pour un problème d'advection-diffusion, D.E.A. de Mécanique, Université Aix-Marseille II,juillet.
- [23] W. HACKBUSCH and U. TRQTTENBERG, 1982, eds., Multigrid Methods, Lecture Notes in Mathematics, 960, Springer-Verlag. MR685772
- [24] W. HACKBUSCH, 1984, Local Defect Correction Method and Domain Decomposition Techniques, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 89-113. Zbl0552.65070MR782692
- [25] W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Series in Computational Mathematics, Springer-Verlag. Zbl0595.65106
- [26] K. KHADRA, Ph. ANGOT and J. P. CALTAGIRONE, 1993, A comparison of locally adaptive multigrid methods ; L.D.C., F.A.C, and F.I.C., NASA Conf.Publ 3224, 6th Copper Mountain Conference on Multigrid Methods, N. D. Melson, S. F. McCormick and T. A. Manteuffel, eds., 1, pp.275-292.
- [27] K. KHADRA, 1994, Méthodes adaptatives de raffinement local multigrille; Applications aux équations de Navier-Stokes et de l'énergie, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mathématiques Appliquées, mars.
- [28] P. LE TALLEC, 1994, Domain decomposition methods in computational mechanics, Comput. Mech. Adv., 1, pp. 121-220. Zbl0802.73079MR1263805
- [29] S. F. MCCORMICK, 1984, Fast Adaptive Composite Grid (F.A.C.) Methods : theory for the variational case, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 115-121. Zbl0552.65071MR782693
- [30] S. F. MCCORMICK, ed., 1987, Multigrid Methods, Frontiers in Appl., Math., 3, SIAM, Philadelphie Zbl0659.65094MR972752
- [31] S. F. MCCORMICK, 1989, Multilevel adaptive methods for partial differential equations, Frontiers in Appl. Math,, 6, SIAM, Philadelphia. Zbl0707.65080MR1056696
- [32] S. V. PATANKAR, 1980, Numerical heat transfer and fluid flow, Hemisphère Publishing Corporation, New-York. Zbl0521.76003
- [33] U. RÜDE, 1993, Fully adaptive multigrid methods, SIAM J. Numer. AnaL, 30,pp. 230-248. Zbl0849.65090MR1202664
- [34] J. XU, 1992, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, pp, 581-613. Zbl0788.65037MR1193013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.