On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids

José Luiz Boldrini; Marko Rojas-Medar

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 2, page 123-155
  • ISSN: 0764-583X

How to cite

top

Boldrini, José Luiz, and Rojas-Medar, Marko. "On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.2 (1996): 123-155. <http://eudml.org/doc/193800>.

@article{Boldrini1996,
author = {Boldrini, José Luiz, Rojas-Medar, Marko},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semi-Galerkin approximations; bounded domain; error estimates},
language = {eng},
number = {2},
pages = {123-155},
publisher = {Dunod},
title = {On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids},
url = {http://eudml.org/doc/193800},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Boldrini, José Luiz
AU - Rojas-Medar, Marko
TI - On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 2
SP - 123
EP - 155
LA - eng
KW - semi-Galerkin approximations; bounded domain; error estimates
UR - http://eudml.org/doc/193800
ER -

References

top
  1. [1] J. L. BOLDRINI, M. A. ROJAS-MEDAR, Strong solutions of the equations for nonhomogeneous asymmetric fluids, to appear. Zbl0842.76001MR1303166
  2. [2] D. W. CONDIFF, J. S. DAHLER, 1964, Fluid mechanics aspects of antisymmetric stress, Phys. Fluids, 7, number 6, pp. 842-854. Zbl0125.15801MR167060
  3. [3] J. U. KIM, 1987, Weak solutions of an initial boundary value problem for an incompressible viscous fluid, SIAM J. Math. Anal., 18, pp. 890-96. Zbl0626.35079MR871823
  4. [4] O. A. LADYZHENSKAYA, 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Second Revised Edition, New York. Zbl0184.52603MR254401
  5. [5] O. A. LADYZHENSKAYA, V. A. SOLONNIKOV, 1978, Unique solvability of an initial and boundary value problem for viscous incompressible fluids, Zap. Naučn Sem. Leningrado Otdel Math. Inst. Steklov, 52, 1975, pp. 52-109 ; English Transi., J. Soviet Math., 9, pp. 697-749. Zbl0401.76037
  6. [6] G. LUKASZEWICZ, 1988, On nonstationary flows of asymmetrie fluids, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica 106°&gt; XII, fasc. 3, pp. 35-44. Zbl0668.76044
  7. [7] G. LUKASZEWICZ, 1989, On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie di Matematica 107 °, XIII, fasc. 6, pp. 105-120. Zbl0692.76020
  8. [8] G. LUKASZEWICZ, 1990, On nonstationary flows of asymmetrie fluids, Math. Methods Appl. Sci., 19, no. 3, pp. 219-232. Zbl0703.76031
  9. [9] L. G. PETROSYAN, Some Problems of Mechanics of Fluids with Antisymmetric Stress Tensor, Erevan, 1984 (in Russian). 
  10. [10] R. RAUTMANN, 1980, On convergence rate of nonstationary Navier-Stokes approximations, Proc. IUTAM Symp. Approx. Meth., for Navier-Stokes Problem, Lecture Notes in Math., 771, Springer-Verlag. Zbl0434.35074
  11. [11] M. ROJAS-MEDAR, J. L. BOLDRINI, 1993, Spectral Galerkin approximations for the Navier-Stokes Equations : uniform in time error estimates, Rev. Mat. Apl., 14, pp. 1-12. Zbl0788.76063
  12. [12] R. SALVI, 1989, Error estimates for the spectral Galerkin approximations of the solutions of Navier-Stokes type equation, Glasgow Math. J., 31, pp. 199-211. Zbl0693.76040
  13. [13] R. SALVI, 1991, The equations of viscous incompressible nonhomogeneous fluid : on the existence and regularity, J. Australian Math. Soc, Series B - Applied Mathematics, 33, Part 1, pp. 94-110. Zbl0732.76032
  14. [14] J. SIMON, 1990, Nonhomogeneous viscous incompressible fluids : existence of velocity, density, and pressure, SIAM J. Math. Anal, 21, pp. 1093-1117. Zbl0702.76039
  15. [15] R. TEMAM, 1979, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam. Zbl0426.35003
  16. [16] W. VON WAHL, 1985, The equations of Navier-Stokes Equations and Abstract Parabolic Equations, Aspects of Math., 58, Vieweg, Braunschweig-Wiesbaden. Zbl0575.35074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.