Une norme « naturelle » pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D

J. Baranger; A. Machmoum

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 5, page 549-574
  • ISSN: 0764-583X

How to cite

top

Baranger, J., and Machmoum, A.. "Une norme « naturelle » pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.5 (1996): 549-574. <http://eudml.org/doc/193815>.

@article{Baranger1996,
author = {Baranger, J., Machmoum, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {natural norm; discontinuous finite elements; Galerkin method; method of characteristics; convergence},
language = {fre},
number = {5},
pages = {549-574},
publisher = {Dunod},
title = {Une norme « naturelle » pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D},
url = {http://eudml.org/doc/193815},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Baranger, J.
AU - Machmoum, A.
TI - Une norme « naturelle » pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 5
SP - 549
EP - 574
LA - fre
KW - natural norm; discontinuous finite elements; Galerkin method; method of characteristics; convergence
UR - http://eudml.org/doc/193815
ER -

References

top
  1. [1] J. BARANGER, D. SANDRI, 1992, Finite element approximation of viscoelastic fluid flow : existence of solutions and error bounds. I-Discontinuous contraints, Numer. Math, 63, pp. 13-27. Zbl0761.76032MR1182509
  2. [2] J. P. BENQUÉ, G. LABADIE and J. RONAT, 1982, A new finite element method for Navier Stokes equation coupled with a temperature equation, Proc. 4th. Int. Symp on FEM in flow problems (Ed. T. Kawai), North-Holland, Amsterdam, pp. 295-301. Zbl0508.76049MR706421
  3. [3] A. BERMUDEZ, J. DURANY, 1987, La méthode des caractéristiques pour les problèmes de convection-diffusion stationnaires, M2AN, 21, n° 1, pp. 7-26. Zbl0613.65121MR882685
  4. [4] M. FORTIN, A. FORTIN, Une note sur les méthodes de caractéristiques et de Lesaint-Raviart pour les problèmes hyperboliques stationnaires, M2AN, 23, n° 4, pp. 593-596. Zbl0687.65088MR1025073
  5. [5] V. GIRAULT, P. A. RAVIART, 1986, Finite element method for Navier Stokes equations, Theory and Algorithms, Berlin Heidelberg New York, Springer. Zbl0585.65077MR851383
  6. [6] C. JOHNSON, J. PITKARANTA, 1987, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math of Comp, 46, pp. 1-26. Zbl0618.65105MR815828
  7. [7] P. LESAINT, P. A. RAVIART, 1974, On a finite element method for solving the neutron transport equations, in Mathematical aspects of finite element in partial differential equations (C. de Boor ed.), pp. 89-123. Academic Press. Zbl0341.65076MR658142
  8. [8] J. E. MARSDEN and T. J. R. HUGHES, 1983, Mathematical foundations of Elasticity, Prentice-Hall. Zbl0545.73031
  9. [9] T. E. PATERSON, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal., 26, pp. 133-140. Zbl0729.65085MR1083327

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.