Stationary voltage current characteristics of a plasma

Naoufel Ben Abdallah; Andreas Unterreiter

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 5, page 575-605
  • ISSN: 0764-583X

How to cite

top

Ben Abdallah, Naoufel, and Unterreiter, Andreas. "Stationary voltage current characteristics of a plasma." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.5 (1996): 575-605. <http://eudml.org/doc/193816>.

@article{BenAbdallah1996,
author = {Ben Abdallah, Naoufel, Unterreiter, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {electron-ion plasma; relativistic one-dimensional plasma; Lagrangian; Coulomb forces; Vlasov-Poisson system of equations; monoenergeticity; electric potential; autonomous ordinary differential equation; existence theorem; minimizing solutions},
language = {eng},
number = {5},
pages = {575-605},
publisher = {Dunod},
title = {Stationary voltage current characteristics of a plasma},
url = {http://eudml.org/doc/193816},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Ben Abdallah, Naoufel
AU - Unterreiter, Andreas
TI - Stationary voltage current characteristics of a plasma
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 5
SP - 575
EP - 605
LA - eng
KW - electron-ion plasma; relativistic one-dimensional plasma; Lagrangian; Coulomb forces; Vlasov-Poisson system of equations; monoenergeticity; electric potential; autonomous ordinary differential equation; existence theorem; minimizing solutions
UR - http://eudml.org/doc/193816
ER -

References

top
  1. [1] C. BARDOS and P. DEGOND, 1985, Global Existence for the Vlasov-Poisson Equation in 3 Space with Small Initial Data, Ann. Inst. Henri Poincaré, Analyse non linéaire, 2(2), pp.101-118. Zbl0593.35076MR794002
  2. [2] J. BATT, H. BERESTYCKI, R. DEGOND and B. PERTHAME, 1988, Some Families of Solutions of the Vlasov-Poisson System, Arch. Rat. Mech. Anal, 104(1), pp. 79-103. Zbl0703.35171MR956568
  3. [3] N. BENABDALLAH, 1994, The Child-Langmuir Regime for Electron Transport in a Plasma Including a Background Density of Positive Ions, M3 AS, 4(3), pp, 409-438. MR1282242
  4. [4] N. BENABDALLAH, 1994, Étude de modèles asymptotiques de transport de particules chargées : Asymptotique de Child-Langmuir, PhD thesis, Centre de Mathématiques Appliquées, École Polytechnique, F-91128 Palaiseau Cedex. 
  5. [5] N. BENABDALLAH, P. DEGOND and C. SCHMEISER, 1994, On a Mathematical Model for Hot Carrier Injection in Semiconductors, M2 AS, 17, pp.1193-1212. Zbl0812.35137MR1313133
  6. [6] P. DEGOND and P. A. RAVIART, 1991, An Asymptotic Analysis of the One Dimensional Vlasov-Poisson System : the Child-Langmuir Law, Asymptotic Analysis, 4, pp.187-214. Zbl0840.35082MR1115929
  7. [7] P. DEGOND, S. JAFFARD, F. POUPAUD, P. A. RAVIART. The Child-Langmuir Asymptotics of the Vlasov-Poisson Equation for Cylindrically or Spherically Symmetrie Diodes, Part 1 : Statement of the Problem and Basic Estimates. Technical Report 264, CMAP, École Polytechnique, F-91128 Palaiseau Cedex, 1992. Zbl0844.35086
  8. [8] R. T. GLASSEY and J. W. SCHAEFFER, 1985, On Symmetrie Solutions of the Relativistic Vlasov-Poisson System, Comm. Math. Phys., 101, pp. 459-473. Zbl0582.35110MR815195
  9. [9] R. T. GLASSEY and J. W. SCHAEFFER, 1988, Global Existence for the Relativistic Vlasov-Maxwell System with Nearly Neutral Initial Data, Comm. Math. Phys., 119, pp. 353-384. Zbl0673.35070MR969207
  10. [10] R. T. GLASSEY and W. A. STRAUSS, Singularity Formation in a Collisionless Plasma Could Occur Only at High Velocities, Arch. Rat. Mech. Anal, 92(1), pp. 59-90. Zbl0595.35072MR816621
  11. [11] R.T. GLASSEY and W.A. STRAUSS, 1987, Absence of Shocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys., 113, pp. 191-208. Zbl0646.35072MR919231
  12. [12] C. GREENGARD and P. A. RAVIART, 1990, A Boundary Value Probiem for the Stationary Vlasov-Poisson Equations : the Plane Diode, Comm. Pure. Appl. Math., 43, pp. 473-507. Zbl0721.35084MR1047333
  13. [13] St. HUMPHRIES, 1990, Charged Particle Beams, John Wiley & Sons. 
  14. [14] L. D. LANDAU and E. M. LlFSCHITZ, 1987, Lehrbuch der theoretischen Physik. Teil 2. Klassische Feldtheorie, Akademie Verlag, Berlin, l0th edition. MR893181
  15. [15] M. MARCUS and V. J. MIZEL, 1972, Absolute Continuity on Tracks and Mappings of Sobolev Spaces, Arch. Rat. Mech. Anal., pp. 294-320. Zbl0236.46033MR338765
  16. [16] R.J. DI PERNA and P. L. LIONS, 1989, Global Weak Solutions of Vlasov-Maxwell Systems, Comm. Pure Appl. Math., 42, pp. 729-757. Zbl0698.35128MR1003433
  17. [17] F. POUPAUD, 1992, Boundary Value Problems for the Stationary Vlasov-Maxwell systems, Forum Mathematicum, 4, pp. 499-527. Zbl0785.35020MR1176884
  18. [18] W. P. ZlEMER, 1989, Weakly Differentiable Functions, Springer. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.