Control and estimation of the boundary heat transfer function in Stefan problems

V. Barbu; K. Kunisch; W. Ring

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 671-710
  • ISSN: 0764-583X

How to cite

top

Barbu, V., Kunisch, K., and Ring, W.. "Control and estimation of the boundary heat transfer function in Stefan problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 671-710. <http://eudml.org/doc/193819>.

@article{Barbu1996,
author = {Barbu, V., Kunisch, K., Ring, W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {free moving boundary; feedback control; one phase Stefan problems; inverse problem; least squares; Hilbert space methods; convex analysis; convergence; suboptimal solutions; numerical experiments; regularization methods},
language = {eng},
number = {6},
pages = {671-710},
publisher = {Dunod},
title = {Control and estimation of the boundary heat transfer function in Stefan problems},
url = {http://eudml.org/doc/193819},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Barbu, V.
AU - Kunisch, K.
AU - Ring, W.
TI - Control and estimation of the boundary heat transfer function in Stefan problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 671
EP - 710
LA - eng
KW - free moving boundary; feedback control; one phase Stefan problems; inverse problem; least squares; Hilbert space methods; convex analysis; convergence; suboptimal solutions; numerical experiments; regularization methods
UR - http://eudml.org/doc/193819
ER -

References

top
  1. [B1] V. BARBU, 1993, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York. Zbl0776.49005MR1195128
  2. [B2] V. BARBU, 1991, The approximate solvability ot the inverse one phase Stefan problem, Internat. Series Numer. Math., 99, pp. 33-43, Birkhauser Verlag, Basel. Zbl0733.65092MR1118851
  3. [BBC] J. V. BECK, B. BLACKWELL and C. CLAIR. 1985, Inverse Heat Conduction, Wiley-Interscience. Zbl0633.73120
  4. [BDZ] V. BARBU, G. DA PRATO, J. P. ZOLÉSIO, 1991, Feedback controllability of the free boundary of the one phase Stefan problem, Diff. Integral Equs., 4, pp. 225-239. Zbl0728.49013MR1081181
  5. [BK1] V. BARBU, K. KUNISCH, Identification of nonlinear elliptic equations, (to appear). Zbl0865.35139MR1365132
  6. [BK2] V. BARBU, K. KUNISCH, Identification of nonlinear parabolic equations (to appear). MR1424370
  7. [Br1] H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. Pures Appl., 51, pp. 1-64. Zbl0237.35001MR428137
  8. [Br2] H. BRÉZIS, 1983, Analyse fonctionnelle, Dunod, Paris. Zbl0511.46001MR697382
  9. [C] J. R. CANNON, 1984The One Dimensional Heat Equation, Addison-Weseley Publ. Comp., Menlo Park. Zbl0567.35001MR747979
  10. [DZ] G. DA PRATO, J. P. ZOLÉSIO, 1988, An optimal control problem for a parabolic equation in noncylindrical domains, Systems & Control Letters, 11, pp 73-77. Zbl0656.49001MR949893
  11. [GLS] GRIPENBERG, S. LONDEN, and STAFFANS, 1990, Volterra Integral and Functional Equations, Cambridge University Press. Zbl0695.45002MR1050319
  12. [HN] K. H. HOFFMANN, M. NIEZGODKA, 1990, Control of evolutionary free boundary problems, in Fret Boundary Problems Theory and Applications, pp. 439-450, K. H. Hoffmann and J. Sprekels, eds., Pitman Research Notes in Mathematics 186, Longman, London. MR1081737
  13. [HS] K. H. HOFFMANN, J. SPREKELS, 1982, Real time control of the free boundary in a two phase Stefan problem, Numerical Functional Anal. Optimiz, 5, pp. 47-76. Zbl0502.49005MR703116
  14. [KMP] K. KUNISCH, K. MURPHY, and G. PEICHL, Estimation of the conductivity in the one-phase Stefan problem : Basic results, to appear in Bolletino Unione Mat. Italiana. Zbl0848.35140MR1328513
  15. [La] P. K. LAMM, Future-sequential regularization methods for ill-posed Volterra equations, to appear in J. Math. Anal. and Appl. Zbl0851.65094MR1354556
  16. [Li] J. L. LIONS, 1969, Quelques Méthodes de Résolutions de Problèmes aux Limites Nonlinéaires, Dunod, Paris. Zbl0189.40603
  17. [PW] H. PROTER, H. WEINBERGER, 1983, The Maximum Principle, Springer-Verlag, Berlin. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.