On the Chebyshev penalty method for parabolic and hyperbolic equations

Lucia Dettori; Baolin Yang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 7, page 907-920
  • ISSN: 0764-583X

How to cite

top

Dettori, Lucia, and Yang, Baolin. "On the Chebyshev penalty method for parabolic and hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.7 (1996): 907-920. <http://eudml.org/doc/193828>.

@article{Dettori1996,
author = {Dettori, Lucia, Yang, Baolin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical examples; pseudospectral Chebyshev discretization; Chebyshev penalty method; hyperbolic equations; parabolic equation; stability; Maxwell equation},
language = {eng},
number = {7},
pages = {907-920},
publisher = {Dunod},
title = {On the Chebyshev penalty method for parabolic and hyperbolic equations},
url = {http://eudml.org/doc/193828},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Dettori, Lucia
AU - Yang, Baolin
TI - On the Chebyshev penalty method for parabolic and hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 7
SP - 907
EP - 920
LA - eng
KW - numerical examples; pseudospectral Chebyshev discretization; Chebyshev penalty method; hyperbolic equations; parabolic equation; stability; Maxwell equation
UR - http://eudml.org/doc/193828
ER -

References

top
  1. [1] D. GOTTLIEB, M. Y. HUSSAINI and S. A. ORZAG, 1984, Theory and application of spectral methods, in : R. VOIGT, D. GOTTLIEB and M. Y. HUSSAINI, ds., Spectral Methods for Partial Differential Equations (SIAM-CBMS, Philadelphia, PA, 1984, pp. 1-94. Zbl0599.65079MR758261
  2. [2] D. FUNARO, 1992, Polynomial approximation of differential equations, Springer-Verlag. Zbl0774.41010MR1176949
  3. [3] D. FUNARO, 1988, Domain decomposition methods for pseudospectral approximations. Part One : Second order equations in one dimension, Numr. Math., 52, pp. 329-344. Zbl0637.65077MR929576
  4. [4] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag. Zbl0658.76001MR917480
  5. [5] W. S. DON and D. GOTTLIEB, 1994, The Chebyshev-Legendre method : implementing Legendre methods on Chebyshev points, SIAM J. Numer. Anal., 6, pp. 1519-1534. Zbl0815.65106MR1302673
  6. [6] D. FUNARO and D. GOTTLIEB, 1988, A new method of imposing boundary conditions for hyperbohc equations, Math. Comp., 51, pp. 599-613. Zbl0699.65079MR958637
  7. [7] D. FUNARO and D. GOTTLIEB, 1991, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comp., 57, pp. 585-596. Zbl0736.65074MR1094950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.