# On the Chebyshev penalty method for parabolic and hyperbolic equations

- Volume: 30, Issue: 7, page 907-920
- ISSN: 0764-583X

## Access Full Article

top## How to cite

topDettori, Lucia, and Yang, Baolin. "On the Chebyshev penalty method for parabolic and hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.7 (1996): 907-920. <http://eudml.org/doc/193828>.

@article{Dettori1996,

author = {Dettori, Lucia, Yang, Baolin},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {numerical examples; pseudospectral Chebyshev discretization; Chebyshev penalty method; hyperbolic equations; parabolic equation; stability; Maxwell equation},

language = {eng},

number = {7},

pages = {907-920},

publisher = {Dunod},

title = {On the Chebyshev penalty method for parabolic and hyperbolic equations},

url = {http://eudml.org/doc/193828},

volume = {30},

year = {1996},

}

TY - JOUR

AU - Dettori, Lucia

AU - Yang, Baolin

TI - On the Chebyshev penalty method for parabolic and hyperbolic equations

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 1996

PB - Dunod

VL - 30

IS - 7

SP - 907

EP - 920

LA - eng

KW - numerical examples; pseudospectral Chebyshev discretization; Chebyshev penalty method; hyperbolic equations; parabolic equation; stability; Maxwell equation

UR - http://eudml.org/doc/193828

ER -

## References

top- [1] D. GOTTLIEB, M. Y. HUSSAINI and S. A. ORZAG, 1984, Theory and application of spectral methods, in : R. VOIGT, D. GOTTLIEB and M. Y. HUSSAINI, ds., Spectral Methods for Partial Differential Equations (SIAM-CBMS, Philadelphia, PA, 1984, pp. 1-94. Zbl0599.65079MR758261
- [2] D. FUNARO, 1992, Polynomial approximation of differential equations, Springer-Verlag. Zbl0774.41010MR1176949
- [3] D. FUNARO, 1988, Domain decomposition methods for pseudospectral approximations. Part One : Second order equations in one dimension, Numr. Math., 52, pp. 329-344. Zbl0637.65077MR929576
- [4] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag. Zbl0658.76001MR917480
- [5] W. S. DON and D. GOTTLIEB, 1994, The Chebyshev-Legendre method : implementing Legendre methods on Chebyshev points, SIAM J. Numer. Anal., 6, pp. 1519-1534. Zbl0815.65106MR1302673
- [6] D. FUNARO and D. GOTTLIEB, 1988, A new method of imposing boundary conditions for hyperbohc equations, Math. Comp., 51, pp. 599-613. Zbl0699.65079MR958637
- [7] D. FUNARO and D. GOTTLIEB, 1991, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comp., 57, pp. 585-596. Zbl0736.65074MR1094950

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.