On the stability of stellar structure in one dimension II : the reactive case

B. Ducomet

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 3, page 381-407
  • ISSN: 0764-583X

How to cite

top

Ducomet, B.. "On the stability of stellar structure in one dimension II : the reactive case." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.3 (1997): 381-407. <http://eudml.org/doc/193842>.

@article{Ducomet1997,
author = {Ducomet, B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {free boundary problem; self-gravitating gas; non-radiative limit; asymptotic behaviours; isothermal solution; photon gas},
language = {eng},
number = {3},
pages = {381-407},
publisher = {Dunod},
title = {On the stability of stellar structure in one dimension II : the reactive case},
url = {http://eudml.org/doc/193842},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Ducomet, B.
TI - On the stability of stellar structure in one dimension II : the reactive case
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 3
SP - 381
EP - 407
LA - eng
KW - free boundary problem; self-gravitating gas; non-radiative limit; asymptotic behaviours; isothermal solution; photon gas
UR - http://eudml.org/doc/193842
ER -

References

top
  1. [1] GUI-QIANG CHEN, 1992, Global solution to the compressible Navier-Stokes equations for a reacting mixture, SIAM J. Math. Anal. 23, 609-634. Zbl0771.35044MR1158824
  2. [2] S. F. SHANDARIN, Ya. B. ZELDOVITCH, 1989, The large-scale structure of the universe : Turbulence, intermittency, structures in a self-gravitating medium, Reviews of Modern Physics, 61, 185-220. MR989562
  3. [3] F. WILLIAMS, 1983, Combustion theory, Addison-Wesley. 
  4. [4] Y. B. ZELDOVITCH, Yu. RAISER, 1966, Physics of shock waves and high temperature hydrodynamic phenomena, Academic Press. 
  5. [5] R. KlPPENHAHN, A. WEINGERT, 1994, Stellar structure and évolution, Springer Verlag. 
  6. [6] D. KINDERLEHRER, G. STAMPACCHIA, 1980, An introduction to variational inequalities and their applications, Academic Press. Zbl0457.35001MR567696
  7. [7] T. NAGASAWA, 1988, On the outer pressure problem of the one-dimensional polytropic ideal gas, Japan J. Appl. Math., 5, 53-85. Zbl0665.76076MR924744
  8. [8] V.A. SOLONNIKOV, A. V. KAZHIKHOV, 1981, Existence theorems for the equations of motion of a compressible viscous fluid, Ann. Rev. Fluid Mech., 13, 79-95. Zbl0492.76074
  9. [9] S. N. ANTONSEV, A.V. KAZHIKOV, V. N. MONAKHOV, 1990, Boundary value problems in mechanics of non-homogeneous fluids, North Holland. Zbl0696.76001
  10. [10] P. BLOTTIAU, S. BOUQUET, J. P. CHIÈZE, 1988, An asymptotic self-similar solution for the gravitational collapse, Astron. Astrophys., 207, 24-36. 
  11. [11] T. MAKINO, B. PERTHAME, 1990, Sur les solutions à symétrie sphériques de l'équation d'Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl Math., 7, 165-170. Zbl0743.35048MR1039243
  12. [12] B. DUCOMET, 1995, Evolution of a self-gravitating Rosseland gas in one dimension, Math. Models and Methods in Appl. Sci, 5, 999-1012. Zbl0838.76079MR1359217
  13. [13] B. DUCOMET, 1996, On the stability of a stellar structure in one dimension, Math. Models and Methods in Appl. Sci., 6, 365-383. Zbl0853.76075MR1388712
  14. [14] T. NAGASAWA, 1988, On the asymptotic behavior of the one-dimensional motion of the polytropic ideal gas with stress-free condition, Quart. of Appl. Math., 46, 665-679. Zbl0693.76075MR973382
  15. [15] D. HOFF, 1987, Global existence for ld, compressible isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc, 303, 169-181. Zbl0656.76064MR896014
  16. [16] D. HOFF, 1991, Discontinuous solutions of the Navier-Stokes for compressible flows, Arch. Rational Mech. Anal., 114, 15-46. Zbl0732.35071MR1088275
  17. [17] D. HOFF, 1992, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of non-isentropic flow with discontinuous initial data, Journal of Diff. Equ., 95,33-74. Zbl0762.35085MR1142276
  18. [18] D. SERRE, 1986, Solutions faible globales des équations de Navier-Stokes pour un fluide compressible, C.R. Acad. Sci. Paris, 303, Série I, 639-642. Zbl0597.76067MR867555
  19. [19] D. SERRE, 1986, Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de la chaleur, C.R. Acad. Sci. Paris, 303, Série I, 703-706. Zbl0611.35070MR870700
  20. [20] D. SERRE, 1991, Évolution d'une masse finie de fluide en dimension 1, In : Nonlinear Partial Differential Equations, H. Brézis et J. L. Lions Ed., Longman. Zbl0729.76027
  21. [21] S. CHANDRASEKHAR, 1957, An Introduction to the Study of Stellar Structure, Dover. Zbl0079.23901MR92663
  22. [22] B. DUCOMET, Hydrodynamical models of stars, To appear in Reviews in Mathematical Physics. 
  23. [23] M. OKADA, T. MAKINO, 1993, Free boundary problem for the equation of spherically symmetric motion of viscous gas, Japan J. Indust. Appl. Math., 10, 219-235. Zbl0783.76082MR1227730
  24. [24] K. MIZOHATA, 1993, Global weak solutions for the equation of isothermal gas around a star, Preprint, Dep. of Inform. Sci., Tokyo Inst. of Technology. Zbl0833.35114MR1295943

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.