Neumann-Neumann algorithms for spectral elements in three dimensions

Luca F. Pavarino

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 4, page 471-493
  • ISSN: 0764-583X

How to cite

top

Pavarino, Luca F.. "Neumann-Neumann algorithms for spectral elements in three dimensions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.4 (1997): 471-493. <http://eudml.org/doc/193846>.

@article{Pavarino1997,
author = {Pavarino, Luca F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Schwarz method; domain decomposition algorithms; finite element; spectral element discretizations; elliptic problems; three dimensions; Neumann-Neumann preconditioners; conditioning; iteration operator},
language = {eng},
number = {4},
pages = {471-493},
publisher = {Dunod},
title = {Neumann-Neumann algorithms for spectral elements in three dimensions},
url = {http://eudml.org/doc/193846},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Pavarino, Luca F.
TI - Neumann-Neumann algorithms for spectral elements in three dimensions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 4
SP - 471
EP - 493
LA - eng
KW - Schwarz method; domain decomposition algorithms; finite element; spectral element discretizations; elliptic problems; three dimensions; Neumann-Neumann preconditioners; conditioning; iteration operator
UR - http://eudml.org/doc/193846
ER -

References

top
  1. [1] C. BERNARDI and Y. MADAY, 1992, Approximations Spectrales de Problèmes aux Limites Elliptiques, vol. 10 of Mathématiques & Applications, Springer Verlag France, Paris. Zbl0773.47032MR1208043
  2. [2] J. H. BRAMBLE and J. Xu, 1991, Some estimates for a weighted L2 projection, Math. Comp., 56, pp. 463-476. Zbl0722.65057MR1066830
  3. [3] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag. Zbl0658.76001MR917480
  4. [4] M. CASARIN, 1995, Quasi-optimal Schwarz methods for the conforming spectral element discretization, in 1995 Copper Mountain Conference on Multignd Methods, N. D. Melson, T. A. Manteuffel and S. F. McCormick, eds., NASA, 1995. Zbl0889.65123
  5. [5] T. F. CHAN and T. P. MATHEW, 1994, Domain decomposition algorithms, Acta Numerica, Cambridge University Press, pp. 61-143. Zbl0809.65112MR1288096
  6. [6] M. DRYJA, B. F. SMITH and O. B. WIDLUND, 1994, Schwarz analysis of itérative substructunng algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31, pp. 1662-1694. Zbl0818.65114MR1302680
  7. [7] M. DRYJA and O. B. WIDLUND, 1990, Towards a unified theory of domain décomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R. Glowinski, J. Pénaux and O. Widlund, eds., SIAM, Philadelphia, PA, pp. 3-21. Zbl0719.65084MR1064335
  8. [8] M. DRYJA and O. B. WlDLUND, 1995, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, pp. 121-155. Zbl0824.65106MR1319698
  9. [9] P. F. FISCHER and E. M. RØNQUIST, 1994, Spectral element methods for large scale parallel Navier-Stokes calculations, Comp. Meth. Appl. Mech. Engr., 116, pp. 69-76. Zbl0826.76060MR1286514
  10. [10] P. LE TALLEC, 1994, Domain decomposition methods in computational mechanics, in Computational Mechanics Advances, J. T. Oden, ed., vol 1 (2), North-Holland, pp. 121-220. Zbl0802.73079MR1263805
  11. [11] P. LE TALLEC, Y.-H. DE ROECK and M. VIDRASCU, 1991, Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, 35. Zbl0719.65083
  12. [12] J. MANDEL, Balancing domain decomposition, 1993, Comm. Numer. Meth. Engrg., 9, pp. 233-241. Zbl0796.65126MR1208381
  13. [13] J. MANDEL and M. BREZINA, 1993, Balancing domain decomposition : Theory and computations in two and three dimensions, tech. rep., Computational Mathematics Group, University of Colorado at Denver, UCD/CCM TR 2. 
  14. [14] S. S. PAHL, Schwarz type domain decomposition methods for spectral element discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of Wittwatersrand, Johannesburg, South Africa, December 1993. 
  15. [15] L. F. PAVARINO and O. B. WlDLUND, 1997, Iterative substructuring methods for spectral elements : Problems in three dimensions based on numerical quadrature. Computers & Mathematics with Applications, 33, pp. 193-209. Zbl0871.41020MR1442072
  16. [16] L. F. PAVARINO and O. B. WlDLUND, 1996, A polylogarithmic bound for an itérative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, pp. 1303-1335. Zbl0856.41007MR1403547
  17. [17] L. F. PAVARINO and O. B. WlDLUND, 1995, Preconditioned conjugate gradient solvers for spectral elements in 3D, in Solution Techniques for Large Scale CFD Problems, W. Habashi, ed., John Wiley & Sons, pp. 249-270. 
  18. [18] E. M. RØNQUIST, 1992, A domain decomposition method for elliptic boundary value problems : Application to unsteady incompressible fluid flow, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds., Philadelphia, PA, SIAM. Zbl0767.76056MR1189558
  19. [19] E. M. RØNQUIST, 1995, A domain decomposition solver for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. To appear. 
  20. [20] B. F. SMTTH, P. E. BJØRSTAD and W. D. GROPP, 1996, Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press. Zbl0857.65126MR1410757

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.