A numerical study on Neumann-Neumann methods for hp approximations on geometrically refined boundary layer meshes II. Three-dimensional problems
Andrea Toselli; Xavier Vasseur
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 1, page 99-122
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Y. Achdou, P. Le Tallec, F. Nataf and M. Vidrascu, A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl Mech. Engrg.184 (2000) 145–170.
- M. Ainsworth, A preconditioner based on domain decomposition for hp–FE approximation on quasi–uniform meshes. SIAM J. Numer. Anal.33 (1996) 1358–1376.
- B. Andersson, U. Falk, I. Babuška and T. von Petersdorff, Reliable stress and fracture mechanics analysis of complex aircraft components using a hp–version FEM. Int. J. Numer. Meth. Eng.38 (1995) 2135–2163.
- O. Axelsson, Iterative Solution Methods. Cambridge University Press (1994).
- I. Babuška and B. Guo, Approximation properties of the hp–version of the finite element method. Comput. Methods Appl. Mech. Engrg.133 (1996) 319–346.
- R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edition. SIAM, Philadelphia, PA (1994).
- M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.182 (2002) 418–477.
- M. Benzi and M. Tuma, A parallel solver for large-scale Markov chains. Appl. Numer. Math.41 (2002) 135–153.
- C. Bernardi and Y. Maday, Spectral methods. In Handbook of Numerical Analysis, North-Holland, Amsterdam Vol. V, Part 2 (1997) 209–485.
- S. Beuchler, Multigrid solver for the inner problem in domain decomposition methods for p-fem. SIAM J. Numer. Anal.40 (2002) 928–944.
- A. Björck, Numerical methods for least-squares problems. SIAM (1996).
- R. Bridson and W.-P. Tang, Refining an approximate inverse. J. Comput. Appl. Math.123 (2000) 293–306.
- P. Brown and H. Walker, GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl.18 (1997) 37–51.
- W. Cecot, W. Rachowicz and L. Demkowicz, An hp-adaptive finite element method for electromagnetics. III. a three-dimensional infinite element for Maxwell's equations. Internat. J. Numer. Methods Engrg.57 (2003) 899–921.
- E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput.21 (2000) 1804–1822.
- M. Dryja and O.B. Widlund, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Comm. Pure Appl. Math.48 (1995) 121–155.
- M. Dryja, M.V. Sarkis and O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math.72 (1996) 313–348.
- C. Farhat and F.-X. Roux, Implicit parallel processing in structural mechanics, in Computational Mechanics Advances, J. Tinsley Oden Ed. North-Holland 2 (1994) 1–124.
- C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engng.32 (1991) 1205–1227.
- D.R. Fokkema, G.L.G. Sleijpen and H.A. Van der Vorst, Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput.20 (1998) 94–125.
- P. Frauenfelder and C. Lage, An object oriented software package for partial differential equations. ESAIM: M2AN36 (2002) 937–951.
- R. Geus, The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems with application to the design of accelerator cavities. Ph.D. thesis, ETH, Zürich, Institut für Wissenschaftliches Rechnen (2002).
- G. Golub and C. Van Loan, Matrix Computations. The John Hopkins University Press (1996). Third edition.
- G. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer iterations. SIAM J. Sci. Comput.21 (1999) 1305–1320.
- M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput.18 (1997) 838–853.
- W.Z. Gui and I. Babuška, The h-, p- and hp-version of the Finite Element Method in one dimension, I: The error analysis of the p-version, II: The error analysis of the h- and hp-version, III: The adaptive hp-version. Numer. Math.49 (1986) 577–683.
- B. Guo and W. Cao, Additive Schwarz methods for the hp version of the finite element method in two dimensions. SIAM J. Scientific Comput.18 (1997) 1267–1288.
- R. Henderson, Dynamic refinement algorithms for spectral element methods. Comput. Methods Appl. Mech. Engrg. 175 (1999) 395–411.
- I.C.F. Ipsen and C.D. Meyer, The idea behind Krylov methods. Amer. Math. Monthly105 (1998) 889–899.
- G.E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for CFD. Oxford University Press (1999).
- V. Korneev, J.E. Flaherty, J.T. Oden and J. Fish, Additive Schwarz algorithms for solving hp-version finite element systems on triangular meshes. Appl. Numer. Math43 (2002) 399–421.
- V. Korneev, U. Langer and L.S. Xanthis, On fast domain decomposition solving procedures for hp-discretizations of 3d elliptic problems. Comput. Methods Appl. Math.3 (2003) 536–559.
- P. Le Tallec and A. Patra, Non–overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Engrg.145 (1997) 361–379.
- J.W. Lottes and P.F. Fischer, Hybrid Multigrid/Schwarz algorithms for the spectral element method. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory (January 2003).
- J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp.65 (1996) 1387–1401.
- J.M. Melenk and C. Schwab, hp–FEM for reaction–diffusion equations. I: Robust exponential convergence. SIAM J. Numer. Anal.35 (1998) 1520–1557.
- M. Melenk, hp-finite element methods for singular perturbations. Springer Verlag. Lect. Notes Math.1796 (2002).
- P. Monk, Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 2003.
- R. Nicolaides, Deflation of conjugate gradients with application to boundary value problems. SIAM J. Numer. Anal.24 (1987) 355–36.
- J.T. Oden, A. Patra and Y. Feng, Parallel domain decomposition solver for adaptive hp finite element methods. SIAM J. Numer. Anal.34 (1997) 2090–2118.
- L.F. Pavarino, Neumann-Neumann algorithms for spectral elements in three dimensions. RAIRO: Modél. Math. Anal. Numér.31 (1997) 471–493.
- L.F. Pavarino and O.B. Widlund, Balancing Neumann-Neumann algorithms for incompressible Navier-Stokes equations. Commun. Pure Appl. Math.55 (2002) 302–335.
- A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994).
- J. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. Mc Cormick Ed. SIAM Philadelphia (1987) 73–130.
- Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.14 (1993) 461–469.
- Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM J. Sci. Statist. Comput.7 (1986) 856–869.
- Y. Saad and B. Suchomel, Arms: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl.9 (2002) 359–378.
- M.V. Sarkis, Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. Ph.D. thesis, Courant Institute, New York University, September (1994). TR671, Department of Computer Science, New York University, URL: file://cs.nyu.edu/pub/tech-reports/tr671.ps.Z.
- D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal.38 (2000) 837–875.
- C. Schwab, p– and hp– Finite Element Methods. Oxford Science Publications (1998).
- C. Schwab and M. Suri, The p and hp version of the finite element method for problems with boundary layers. Math. Comp.65 (1996) 1403–1429.
- C. Schwab, M. Suri and C.A. Xenophontos, The hp–FEM for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Engrg.157 (1998) 311–333.
- B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press (1996).
- P. Solin, K. Segeth and I. Dolezel, Higher-order finite element methods. Studies in Advanced Mathematics, Chapman and Hall, 2004.
- A. Toselli, FETI domain decomposition methods for scalar advection-diffusion problems.Comput. Methods Appl. Mech. Engrg.190 (2001) 5759–5776.
- A. Toselli and X. Vasseur, Domain decomposition methods of Neumann-Neumann type for hp-approximations on geometrically refined boundary layer meshes in two dimensions. Technical Report 02–15, Seminar für Angewandte Mathematik, ETH, Zürich (September 2002). Submitted to Numerische Mathematik.
- A. Toselli and X. Vasseur, A numerical study on Neumann-Neumann and FETI methods for hp-approximations on geometrically refined boundary layer meshes in two dimensions. Comput. Methods Appl. Mech. Engrg. 192 (2003) 4551–4579.
- A. Toselli and X. Vasseur, Domain decomposition methods of Neumann-Neumann type for hp-approximations on boundary layer meshes in three dimensions. IMA J. Numer. Anal.24 (2004) 123–156.
- A. Toselli and O. Widlund, Domain Decomposition methods – Algorithms and Theory. Springer Series on Computational Mathematics, Springer 34 (2004).
- U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid. Academic Press, London (2000). Guest contribution by Klaus Stüben: “An Introduction to Algebraic Multigrid”.