An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model

J. Durany; G. García; C. Vásquez

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 4, page 495-516
  • ISSN: 0764-583X

How to cite

top

Durany, J., García, G., and Vásquez, C.. "An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.4 (1997): 495-516. <http://eudml.org/doc/193847>.

@article{Durany1997,
author = {Durany, J., García, G., Vásquez, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence of solution; lubrication equation; cavitation free-boundary model of Elrod-Adams; Barus law for piezoviscous fluids; biharmonic equation; iterative algorithm; finite element approximations; upwind technique},
language = {eng},
number = {4},
pages = {495-516},
publisher = {Dunod},
title = {An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model},
url = {http://eudml.org/doc/193847},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Durany, J.
AU - García, G.
AU - Vásquez, C.
TI - An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 4
SP - 495
EP - 516
LA - eng
KW - existence of solution; lubrication equation; cavitation free-boundary model of Elrod-Adams; Barus law for piezoviscous fluids; biharmonic equation; iterative algorithm; finite element approximations; upwind technique
UR - http://eudml.org/doc/193847
ER -

References

top
  1. [1] R. A. ADAMS, 1975, Sobolev Spaces. Academic Press. Zbl0314.46030MR450957
  2. [2] S. ALVAREZ, 1986, Problemas de Frontera Libre en Teoría de Lubrificatión.Thesis, University Complutense of Madrid, Spain. 
  3. [3] S. BALASUNDARAM and P. K. BHATTACHARYYA, 1982, A mixed finite element method for the Dirichlet problem of fourth order elliptic operators with variable coefficients. In : Finite Element Methods in Flow Problems (Ed. T. Kawai) Tokyo Univ. Press. Zbl0508.76006
  4. [4] G. BAYADA, M. CHAMBAT, 1984, Existence and uniqueness for a lubrication problem with nonregular conditions on the free boundary. Boll. UMI. 6, 3B, 543-557. Zbl0612.35026MR762718
  5. [5] G. BAYADA, M. CHAMBAT, 1986, The transition between the Stokes equation and the Reynolds equation : a mathematical proof. Appl. Math. Opt., 14, 73-93. Zbl0701.76039MR826853
  6. [6] G. BAYADA, M. CHAMBAT, 1986, Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. of Theor. and Appl. Mech., 5, 703-729. Zbl0621.76030MR878123
  7. [7] G. BAYADA, J. DURANY, C. VAZQUEZ, 1995, Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Meth. in the Appl. Sc., 18, 255-266. Zbl0820.35110MR1319998
  8. [8] G. BAYADA, M. EL ALAOUI, C. VÁZQUEZ, 1996, Existence of solution for elastohydrodynamic piezoviscous lubrication problems with a new model of cavitation. Eur. J. of Appl. Math., 7, 63-73. Zbl0856.76013MR1381799
  9. [9] A. BERMÚDEZ, J. DURANY, 1989, Numerical solution of cavitation problems in lubrication. Comp. Meth. in Appl. Mech. and Eng., 75, 457-466. Zbl0687.76030MR1035758
  10. [10] A. BERMÚDEZ, C. MORENO, 1981, Duality methods for solving variational inequalities. Comp. Math, with Appl., 7, 43-58. Zbl0456.65036MR593554
  11. [11] A. CAMERON, 1981, Basic Lubrication Theory. Ellis Horwood. 
  12. [12] M. CHIPOT, 1984, Variational Inequalities and Flow on Porous Media. Appl. Math. Sc. Series 52. Springer-Verlag. Zbl0544.76095MR747637
  13. [13] P. CIARLET, 1978, The Finite Element Method for Elliptic Problems. North-Holland. Zbl0383.65058MR520174
  14. [14] P. CIARLET, P. A. RAVIART, 1974, A mixed finite element method for the biharmonic equation. In : Mathematical Aspects of Finite Elements in Partial Differential Equations. (Ed. C. de Boor), Academic Press, 125-145. Zbl0337.65058MR657977
  15. [15] G. CIMATTI, 1983, How the Reynolds equation is related to the Stokes equation. Appl. Math. Opt., 10, 223-248. Zbl0538.76038MR722490
  16. [16] G. CIMATTI, 1986, Existence and uniqueness for nonlinear Reynolds equations.Int. J. Eng. Sc. 24, N.5, 827-834. Zbl0624.76090MR841923
  17. [17] D. DOWSON, C. M. TAYLOR, 1979, Cavitation in bearings. Ann. Rev. Fluid Mech.,35-66. 
  18. [18] J. DURANY, G. GARCIA, C. VAZQUEZ, 1996, A mixed Dirichlet-Neumann problem for a nonlinear Reynolds equation in elastohydrodynamic piezoviscous lubncation. Proc. of the Edinb. Math Soc., 39, 151-162. Zbl0857.35044MR1375675
  19. [19] J. DURANY, G GARCÍA, C. VÁZQUEZ, 1996, Numerical computation of free boundary problems in elastohydrodynamic lubrication Appl. Math. Mod, 20, 104-113. Zbl0851.73058
  20. [20] J. DURANY, C. VAZQUEZ, 1994, Mathematical analysis of an elastohydrodynamic lubrication problem with cavitation Appl. Anal. Vol. 53, N. 1, 135-142. Zbl0841.35133MR1379190
  21. [21] V. GlRAULT, P. A. RAVIART, 1979, Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, 749, Springer. Zbl0413.65081MR548867
  22. [22] R. GLOWINSKI, O. PIRONNEAU, 1979, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem SIAM Review, 21, 167-212. Zbl0427.65073MR524511
  23. [23] D. KINDERLEHRER, G. STAMPACCHIA, 1980, An Introduction to Variational Inequalities and their Applications Academic Press. Zbl0457.35001MR567696
  24. [24] O. REYNOLDS, 1986, On the theory of lubrication and its applications to M. Beauchamp Tower's experiments Phil. Trans. Roy. Soc. London, A117, 157-234. JFM18.0946.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.