Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device
Iñigo Arregui; J. Jesús Cendán; Carlos Vázquez
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 2, page 325-343
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Alvarez, Problemas de frontera libre en teoría de lubricación. Ph.D. thesis, Universidad Complutense de Madrid (1986).
- I. Arregui and C. Vázquez, Finite element solution of a Reynolds-Koiter coupled problem for the elastic journal bearing. Comput. Methods Appl. Mech. Engrg.190 (2001) 2051-2062.
- G. Bayada and M. Chambat, The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Optim.14 (1986) 73-93.
- G. Bayada and M. Chambat, Sur quelques modélisations de la zone de cavitation en lubrification hydrodynamique. J. Theoret. Appl. Mech.5 (1986) 703-729.
- G. Bayada, M. Chambat and C. Vázquez, Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math.98 (1998) 191-212.
- G. Bayada, J. Durany and C. Vázquez, Existence of solution for a lubrication problem in elastic journal bearing devices with thin bearing. Math. Methods Appl. Sci.18 (1995) 255-266.
- M. Bernadou and P.G. Ciarlet, Sur l'ellipiticité du modèle linéaire de coques de W.T. Koiter. Lecture Notes in Appl. Sci. Engrg.34 (1976) 89-136.
- M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. J. Elasticity34 (1992) 645-667.
- H. Brézis, Analyse fonctionnelle. Masson, Paris (1983).
- A. Cameron, Basic lubrication theory. Ellis Horwood, West Sussex (1981).
- Ph. Destuynder, Modélisation des coques minces élastiques. Masson, Paris (1990).
- Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part I: The mixed variational formulation. Comput. Methods Appl. Mech. Engrg.120 (1995) 195-217.
- Ph. Destuynder and M. Salaün, A mixed finite element for shell model with free edge boundary conditions. Part II: The numerical scheme. Comput. Methods Appl. Mech. Engrg.120 (1995) 219-242.
- J. Durany, G. García and C. Vázquez, An elastohydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model. RAIRO Modél. Math. Anal. Numér.31 (1997) 495-516.
- J. Durany, G. García and C. Vázquez, Simulation of a lubricated Hertzian contact problem under imposed load. Finite Elem. Anal. Des.38 (2002) 645-658.
- V. Girault and P.A. Raviart, Finite element aproximation of the Navier-Stokes equations. Lecture Notes in Math.749, Springer (1997).
- T.G. Hughes, C.D. Elcoate and H.P. Evans, A novel method for integrating first- and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isotermal, line contact problems. Internat. J. Numer. Methods Engrg.44 (1999) 1099-1113.
- D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000).
- R. Verstappen, A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle. J. Comput. Phys.97 (1991) 460-488.
- S.R. Wu, A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication. Internat. J. Engrg. Sci.24 (1986) 1001-1013.
- S.R. Wu and J.T. Oden, A note on applications of adaptive finite elements to elastohydrodynamic lubrication problems. Comm. Appl. Numer. Methods3 (1987) 485-494.