Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of 3

N. Achtaich

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 5, page 599-614
  • ISSN: 0764-583X

How to cite

top

Achtaich, N.. "Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb {R}^3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.5 (1997): 599-614. <http://eudml.org/doc/193850>.

@article{Achtaich1997,
author = {Achtaich, N.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {axisymmetric positive solutions; semilinear elliptic equations; nonlinear Poisson equation; variational methods; algorithm; numerical results},
language = {eng},
number = {5},
pages = {599-614},
publisher = {Dunod},
title = {Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/193850},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Achtaich, N.
TI - Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb {R}^3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 5
SP - 599
EP - 614
LA - eng
KW - axisymmetric positive solutions; semilinear elliptic equations; nonlinear Poisson equation; variational methods; algorithm; numerical results
UR - http://eudml.org/doc/193850
ER -

References

top
  1. [1] N. ACHTAICH, 1986, Injections de type Sobolev. Cras Paris, t. 303, série I. Zbl0602.46031MR854730
  2. [2] R. ADAMS, 1975, Sobolev spaces. Academic press. Zbl0314.46030MR450957
  3. [3] A. AMBROSETTI and P. H. RABINOWITZ, 1973, Dual variational methods in critical point. Theory and applications. Journal of functional Analysis, 14, 349-381. Zbl0273.49063MR370183
  4. [4] C. BANDLE and A. BRILLARD, 1994, Nonlinear elliptic equations involving critical Sobolev exponents : asymptotic analysis via methods of epi-convergence. Zeitschrift fur Analysis und ihre Anwendungen, Journal of analysis and its applications, Volume 13, n° 2, pp. 1-13. Zbl0808.35031MR1305597
  5. [5] H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson. Zbl0511.46001MR697382
  6. [6] H. BREZIS, 1986, Elliptic Equations with limiting Sobolev exponents. The impact of topology. Pure Appl Math., 39, pp. 17-39. Zbl0601.35043MR861481
  7. [7] H. BREZIS and L. NIRENBERG, 1983, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 36, pp. 437-477. Zbl0541.35029MR709644
  8. [8] P. G. CIARLET, 1982, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson. Zbl0488.65001MR680778
  9. [9] J. M. CORON, 1984, Topologie et cas limite des injections de Sobolev. Cras Paris, t. 299, série I. Zbl0569.35032MR762722
  10. [10] I. EKLAND and R. TEMAM, 1973, Analyse convexe et problèmes variationnels. Dunod. Zbl0281.49001
  11. [11] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (Paris 69). Zbl0189.40603
  12. [12] P. L. LIONS, 1982, On the existence of positive solutions of semilinear elliptic equations. SIAM Reviews 24, pp. 441-467. Zbl0511.35033MR678562
  13. [13] B. MERCIER and G. RAUGEL, 1982, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en Θ. RAIRO (Analyse Numérique). Vol. 16. Zbl0531.65054MR684832
  14. [14] D. SERRE, Triplets de solutions d'une équation aux dérivées partielles elliptiques non linéaires. Lectures notes in Mathematics 782. Springer Verlag. Zbl0437.35002
  15. [15] F. de THELIN, 1984, Quelques résultats d'existence et de non existence pour une E.D.P. elliptique non linéaire. Cras Paris, t. 299, série I. Zbl0575.35030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.