Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of
- Volume: 31, Issue: 5, page 599-614
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAchtaich, N.. "Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb {R}^3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.5 (1997): 599-614. <http://eudml.org/doc/193850>.
@article{Achtaich1997,
author = {Achtaich, N.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {axisymmetric positive solutions; semilinear elliptic equations; nonlinear Poisson equation; variational methods; algorithm; numerical results},
language = {eng},
number = {5},
pages = {599-614},
publisher = {Dunod},
title = {Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/193850},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Achtaich, N.
TI - Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of $\mathbb {R}^3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 5
SP - 599
EP - 614
LA - eng
KW - axisymmetric positive solutions; semilinear elliptic equations; nonlinear Poisson equation; variational methods; algorithm; numerical results
UR - http://eudml.org/doc/193850
ER -
References
top- [1] N. ACHTAICH, 1986, Injections de type Sobolev. Cras Paris, t. 303, série I. Zbl0602.46031MR854730
- [2] R. ADAMS, 1975, Sobolev spaces. Academic press. Zbl0314.46030MR450957
- [3] A. AMBROSETTI and P. H. RABINOWITZ, 1973, Dual variational methods in critical point. Theory and applications. Journal of functional Analysis, 14, 349-381. Zbl0273.49063MR370183
- [4] C. BANDLE and A. BRILLARD, 1994, Nonlinear elliptic equations involving critical Sobolev exponents : asymptotic analysis via methods of epi-convergence. Zeitschrift fur Analysis und ihre Anwendungen, Journal of analysis and its applications, Volume 13, n° 2, pp. 1-13. Zbl0808.35031MR1305597
- [5] H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson. Zbl0511.46001MR697382
- [6] H. BREZIS, 1986, Elliptic Equations with limiting Sobolev exponents. The impact of topology. Pure Appl Math., 39, pp. 17-39. Zbl0601.35043MR861481
- [7] H. BREZIS and L. NIRENBERG, 1983, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 36, pp. 437-477. Zbl0541.35029MR709644
- [8] P. G. CIARLET, 1982, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson. Zbl0488.65001MR680778
- [9] J. M. CORON, 1984, Topologie et cas limite des injections de Sobolev. Cras Paris, t. 299, série I. Zbl0569.35032MR762722
- [10] I. EKLAND and R. TEMAM, 1973, Analyse convexe et problèmes variationnels. Dunod. Zbl0281.49001
- [11] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (Paris 69). Zbl0189.40603
- [12] P. L. LIONS, 1982, On the existence of positive solutions of semilinear elliptic equations. SIAM Reviews 24, pp. 441-467. Zbl0511.35033MR678562
- [13] B. MERCIER and G. RAUGEL, 1982, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en Θ. RAIRO (Analyse Numérique). Vol. 16. Zbl0531.65054MR684832
- [14] D. SERRE, Triplets de solutions d'une équation aux dérivées partielles elliptiques non linéaires. Lectures notes in Mathematics 782. Springer Verlag. Zbl0437.35002
- [15] F. de THELIN, 1984, Quelques résultats d'existence et de non existence pour une E.D.P. elliptique non linéaire. Cras Paris, t. 299, série I. Zbl0575.35030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.