Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns

Theodore Tachim Medjo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 7, page 827-844
  • ISSN: 0764-583X

How to cite

top

Tachim Medjo, Theodore. "Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.7 (1997): 827-844. <http://eudml.org/doc/193857>.

@article{TachimMedjo1997,
author = {Tachim Medjo, Theodore},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spatial splitting of unknowns; multilevel methods; dissipative systems; driven cavity flow; stability; centered difference scheme},
language = {eng},
number = {7},
pages = {827-844},
publisher = {Dunod},
title = {Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns},
url = {http://eudml.org/doc/193857},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Tachim Medjo, Theodore
TI - Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 7
SP - 827
EP - 844
LA - eng
KW - spatial splitting of unknowns; multilevel methods; dissipative systems; driven cavity flow; stability; centered difference scheme
UR - http://eudml.org/doc/193857
ER -

References

top
  1. [1] C. H. BRUNEAU, C. JOURON, 1990, An efficient scheme for solving steady incompressible Navier-Stokes equation. J. Comp. Phys., 89, 389-413. Zbl0699.76034
  2. [2] J. P. CHEHAB, 1993, Méthodes des inconnues incrémentales. Applications au calcul des bifurcations. Thèse de l'Université Paris-Sud, Orsay. 
  3. [3] M. CHEN, R. TEMAM, 1993, Nonlinear Galerkin Method in the finite difference case and the wavelet-like incremental unknows, Numer. Math., 64, 271-294. Zbl0798.65093MR1206665
  4. [4] M. CHEN, R. TEMAM, 1993, Incremental unknowns in finite differences: condition number of the matrix. SIAM J. Matrix Anal. Appl., 14, 432-455. Zbl0773.65080MR1211799
  5. [5] M. CHEN, A. MIRANVILLE, R. TEMAM, 1994, Incremental Unknowns in the finite differences in the three space dimensions. Submitted to Mathematica Aplicada e Computacional. Zbl0841.65089MR1384185
  6. [6] O. DAUBE, 1992, Resolution of the 2D N.S. equation in velocity-vorticity form by means of an influence matrix technic. J. Comp. Phys., 103, 402-414. Zbl0763.76046MR1196846
  7. [7] T. DUBOIS, 1993, Simulation numérique d'écoulements homogènes et non homogènes par des méthodes multirésolution. Thèse de l'Université Paris-Sud, Orsay. 
  8. [8] H. F. FASEL, 1979, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flow. Approximation methods for Navier-Stokes problem. Proc. Paderborn, Germany, Springer-Verlag, New York, 177-191. Zbl0463.76040MR565996
  9. [9] GHIA, GHIA SHIM, 1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and the multigrid method. J. Comp. Phys. 48, 387-411. Zbl0511.76031
  10. [10] O. GOYON, 1994, Résolution numérique des problèmes stationnaires et évolutifs non linéaires par la méthode des Inconnues Incrémentales. Thèse de l'Université Paris-Sud, Orsay. 
  11. [11] M. HAFEZ, M. SOLIMAN, A velocity decomposition method for viscous incompressible flow calculations : Part II 3-D problems. AIAA paper 89-1966, Proceedings 9th CFD Conference, Buffalo, N.Y. 
  12. [12] F. JAUBERTEAU, 1990, Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire. Thèse de l'Université Paris-Sud, Orsay. 
  13. [13] M. MARION, R. TEMAM, 1989, Nonlinear Galerkin method, SIAM J. Num. Anal., 26, 1139-1157. Zbl0683.65083MR1014878
  14. [14] M. MARION, R. TEMAM, 1990, Nonlinear Galerkin methods: the finite element case, Num. Math., 57, 205-226. Zbl0702.65081MR1057121
  15. [15] M. MARION, J. Xu, 1995, Error estimates for a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Num. Anal., 32, 4, 1170-1184. Zbl0853.65092MR1342288
  16. [16] R. PEYRET, T. D. TAYLOR, 1985, Computational Method for Fluid Flow. Springer-Verlag, New York. Zbl0717.76003MR770204
  17. [17] J. SHEN, 1987, Résolution numérique des équations de Navier-Stokes par les méthodes spectrales, Thèse de l'Université de Paris-Sud, 1987. 
  18. [18] L. SONKE TABUGUIA, 1989, Etude numérique des équations de Navier-Stokes en milieux multiplement connexes, en formulation vitesse-tourbillons, par une approche multi-domaines. Thèse de l'Université Paris-Sud, Orsay. 
  19. [19] C. SPEZIALE, 1987, On the advantages of vorticity-velocity formulation of the Equations of fluid dynamics. Journal of computational physics, 73, 476-480. Zbl0632.76049
  20. [20] T. TACHIM-MEDJO, 1995, Sur les formulations vitesse-vorticité pour les équations de Navier-Stokes en dimension deux. Implémentation des Inconnues Incrémentales oscillantes dans les équations de Navier-Stokes et de Reaction diffusion. Thèse de l'Université Paris-Sud, Orsay. 
  21. [21] T. TACHIM-MEDJO, 1995, Vorticity-velocity formulation for the stationary Navier-Stokes equations: the three-dimensional case. Appl. Math. Lett, 8, no. 4, 63-66. Zbl0827.76016MR1340750
  22. [22] R. TEMAM, 1990, Inertial manifolds and multigrid method. SIAM J. Math. Anal., 21, no. 1, 145-178. Zbl0715.35039MR1032732
  23. [23] R. TEMAM, 1977, Navier-Stokes equations. Theory and numerical analysis. North-Holland publishing comparny, Amsterdam. Zbl0426.35003MR609732
  24. [24] R. TEMAM, 1983, Navier-Stokes Equations and Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia. Zbl0522.35002MR764933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.