Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns
- Volume: 31, Issue: 7, page 827-844
- ISSN: 0764-583X
Access Full Article
topHow to cite
topTachim Medjo, Theodore. "Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.7 (1997): 827-844. <http://eudml.org/doc/193857>.
@article{TachimMedjo1997,
author = {Tachim Medjo, Theodore},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spatial splitting of unknowns; multilevel methods; dissipative systems; driven cavity flow; stability; centered difference scheme},
language = {eng},
number = {7},
pages = {827-844},
publisher = {Dunod},
title = {Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns},
url = {http://eudml.org/doc/193857},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Tachim Medjo, Theodore
TI - Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 7
SP - 827
EP - 844
LA - eng
KW - spatial splitting of unknowns; multilevel methods; dissipative systems; driven cavity flow; stability; centered difference scheme
UR - http://eudml.org/doc/193857
ER -
References
top- [1] C. H. BRUNEAU, C. JOURON, 1990, An efficient scheme for solving steady incompressible Navier-Stokes equation. J. Comp. Phys., 89, 389-413. Zbl0699.76034
- [2] J. P. CHEHAB, 1993, Méthodes des inconnues incrémentales. Applications au calcul des bifurcations. Thèse de l'Université Paris-Sud, Orsay.
- [3] M. CHEN, R. TEMAM, 1993, Nonlinear Galerkin Method in the finite difference case and the wavelet-like incremental unknows, Numer. Math., 64, 271-294. Zbl0798.65093MR1206665
- [4] M. CHEN, R. TEMAM, 1993, Incremental unknowns in finite differences: condition number of the matrix. SIAM J. Matrix Anal. Appl., 14, 432-455. Zbl0773.65080MR1211799
- [5] M. CHEN, A. MIRANVILLE, R. TEMAM, 1994, Incremental Unknowns in the finite differences in the three space dimensions. Submitted to Mathematica Aplicada e Computacional. Zbl0841.65089MR1384185
- [6] O. DAUBE, 1992, Resolution of the 2D N.S. equation in velocity-vorticity form by means of an influence matrix technic. J. Comp. Phys., 103, 402-414. Zbl0763.76046MR1196846
- [7] T. DUBOIS, 1993, Simulation numérique d'écoulements homogènes et non homogènes par des méthodes multirésolution. Thèse de l'Université Paris-Sud, Orsay.
- [8] H. F. FASEL, 1979, Numerical solution of the complete Navier-Stokes equations for the simulation of unsteady flow. Approximation methods for Navier-Stokes problem. Proc. Paderborn, Germany, Springer-Verlag, New York, 177-191. Zbl0463.76040MR565996
- [9] GHIA, GHIA SHIM, 1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and the multigrid method. J. Comp. Phys. 48, 387-411. Zbl0511.76031
- [10] O. GOYON, 1994, Résolution numérique des problèmes stationnaires et évolutifs non linéaires par la méthode des Inconnues Incrémentales. Thèse de l'Université Paris-Sud, Orsay.
- [11] M. HAFEZ, M. SOLIMAN, A velocity decomposition method for viscous incompressible flow calculations : Part II 3-D problems. AIAA paper 89-1966, Proceedings 9th CFD Conference, Buffalo, N.Y.
- [12] F. JAUBERTEAU, 1990, Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire. Thèse de l'Université Paris-Sud, Orsay.
- [13] M. MARION, R. TEMAM, 1989, Nonlinear Galerkin method, SIAM J. Num. Anal., 26, 1139-1157. Zbl0683.65083MR1014878
- [14] M. MARION, R. TEMAM, 1990, Nonlinear Galerkin methods: the finite element case, Num. Math., 57, 205-226. Zbl0702.65081MR1057121
- [15] M. MARION, J. Xu, 1995, Error estimates for a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Num. Anal., 32, 4, 1170-1184. Zbl0853.65092MR1342288
- [16] R. PEYRET, T. D. TAYLOR, 1985, Computational Method for Fluid Flow. Springer-Verlag, New York. Zbl0717.76003MR770204
- [17] J. SHEN, 1987, Résolution numérique des équations de Navier-Stokes par les méthodes spectrales, Thèse de l'Université de Paris-Sud, 1987.
- [18] L. SONKE TABUGUIA, 1989, Etude numérique des équations de Navier-Stokes en milieux multiplement connexes, en formulation vitesse-tourbillons, par une approche multi-domaines. Thèse de l'Université Paris-Sud, Orsay.
- [19] C. SPEZIALE, 1987, On the advantages of vorticity-velocity formulation of the Equations of fluid dynamics. Journal of computational physics, 73, 476-480. Zbl0632.76049
- [20] T. TACHIM-MEDJO, 1995, Sur les formulations vitesse-vorticité pour les équations de Navier-Stokes en dimension deux. Implémentation des Inconnues Incrémentales oscillantes dans les équations de Navier-Stokes et de Reaction diffusion. Thèse de l'Université Paris-Sud, Orsay.
- [21] T. TACHIM-MEDJO, 1995, Vorticity-velocity formulation for the stationary Navier-Stokes equations: the three-dimensional case. Appl. Math. Lett, 8, no. 4, 63-66. Zbl0827.76016MR1340750
- [22] R. TEMAM, 1990, Inertial manifolds and multigrid method. SIAM J. Math. Anal., 21, no. 1, 145-178. Zbl0715.35039MR1032732
- [23] R. TEMAM, 1977, Navier-Stokes equations. Theory and numerical analysis. North-Holland publishing comparny, Amsterdam. Zbl0426.35003MR609732
- [24] R. TEMAM, 1983, Navier-Stokes Equations and Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia. Zbl0522.35002MR764933
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.