Page 1 Next

Displaying 1 – 20 of 102

Showing per page

A discrete kinetic approximation for the incompressible Navier-Stokes equations

Maria Francesca Carfora, Roberto Natalini (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.

A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids

T. Haga, H. Gao, Z. J. Wang (2011)

Mathematical Modelling of Natural Phenomena

The newly developed unifying discontinuous formulation named the correction procedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms are considered. The CPR method can unify several popular high order methods including the discontinuous Galerkin and the spectral volume methods into a more efficient differential form....

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro Díaz, Enrique Domingo Fernández-Nieto, Tomás Morales de Luna, Gladys Narbona-Reina, Carlos Parés (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...

A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport

Manuel Jesús Castro Díaz, Enrique Domingo Fernández-Nieto, Tomás Morales de Luna, Gladys Narbona-Reina, Carlos Parés (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different...

A multidimensional fluctuation splitting scheme for the three dimensional Euler equations

Jérôme Bastin, Gilbert Rogé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The fluctuation splitting schemes were introduced by Roe in the beginning of the 80's and have been then developed since then, essentially thanks to Deconinck. In this paper, the fluctuation splitting schemes formalism is recalled. Then, the hyperbolic/elliptic decomposition of the three dimensional Euler equations is presented. This decomposition leads to an acoustic subsystem and two scalar advection equations, one of them being the entropy advection. Thanks to this decomposition, the two scalar...

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern, Sébastien Meunier (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u, is governed by an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u- and p-components to obtain optimally convergent a priori bounds for all the terms in the error energy...

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems

Alexandre Ern, Sébastien Meunier (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say u , is governed by an elliptic equation and the other, say p , by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the u - and p -components to obtain optimally convergent a priori bounds for all the terms in the error energy norm....

A posteriori error analysis of the fully discretized time-dependent Stokes equations

Christine Bernardi, Rüdiger Verfürth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

A posteriori error analysis of the fully discretized time-dependent Stokes equations

Christine Bernardi, Rüdiger Verfürth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

A Q -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shadow water system

Manuel Castro, Jorge Macías, Carlos Parés (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a Q -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system

Manuel Castro, Jorge Macías, Carlos Parés (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting in a Q-scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A second order anti-diffusive Lagrange-remap scheme for two-component flows

Marie Billaud Friess, Benjamin Boutin, Filipa Caetano, Gloria Faccanoni, Samuel Kokh, Frédéric Lagoutière, Laurent Navoret (2011)

ESAIM: Proceedings

We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Currently displaying 1 – 20 of 102

Page 1 Next