Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model
Zhiming Chen; C. M. Elliott; Tang Qi
- Volume: 32, Issue: 1, page 25-50
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChen, Zhiming, Elliott, C. M., and Qi, Tang. "Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 25-50. <http://eudml.org/doc/193866>.
@article{Chen1998,
author = {Chen, Zhiming, Elliott, C. M., Qi, Tang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two dimensional evolutionary Ginzburg-Landau superconductivity model; existence of weak solutions; three dimensional variable thickness model},
language = {eng},
number = {1},
pages = {25-50},
publisher = {Dunod},
title = {Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model},
url = {http://eudml.org/doc/193866},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Chen, Zhiming
AU - Elliott, C. M.
AU - Qi, Tang
TI - Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 25
EP - 50
LA - eng
KW - two dimensional evolutionary Ginzburg-Landau superconductivity model; existence of weak solutions; three dimensional variable thickness model
UR - http://eudml.org/doc/193866
ER -
References
top- [CHO 92] S. J. CHAPMAN, S. D. HOWINSON and J. R. OCKENDON; Macroscopic models for superconductivity; SIAM Review, 34 (1990), 529-560. Zbl0769.73068MR1193011
- [CH 95] Z. CHEN and K.-F. HOFFMANN; Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity; Adv. Math. Sci. Appl. 5 (1995), 363-389. Zbl0846.65051MR1360996
- [CHL 93] Z. CHEN, K. H. HOFFMANN and J. LIANG; On a non-stationary Ginzburg-Landau superconductivity model; Math. Meth. Appl. Sci., 16 (1993), 855-875. Zbl0817.35111MR1247887
- [Du 94] Q. DU; Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity; Applicable Analysis 52 (1994), 1-17. Zbl0843.35019MR1379180
- [DG 93] Q. DU and M. D. GUNZBURGER; A model for superconducting thin films having variable thickness; to appear. Zbl0794.58049MR1251263
- [DGP 92] Q. DU, M. D. GUNZBURGER and J. S. PETERSON; Analysis and approximation of the Ginzburg-Landau model of superconductivity; Siam Review, 34 (1992), 54-81. Zbl0787.65091MR1156289
- [DL 76] G. DUVAUT, J. L. LIONS; Inequalities in Mechanics and Physics; Springer, 1976. Zbl0331.35002MR521262
- [EMT 93] C. M. ELLIOTT, H. MATANO and Q. TANG; Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity; Eur. J. Appl. Math., Vol. 5, No 7 (1994), 437-448. Zbl0817.35112MR1309733
- [GE 68] L. P. GOR'KOV, G. M ELIASHBERG; Generalisation of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities; Soviet Phys. J.E.T.P., 27 (1968), 328-334.
- [G 85] P. GRISVARD; Elliptic Problems in Nonsmooth Domains; Pitman, 1985. Zbl0695.35060MR775683
- [GR 86] V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations; Springer-Verlag, 1986. Zbl0585.65077MR851383
- [JT 80] A. JAFFE and C. TAUBES, Vortices and Monopoles; Birkhauser, 1980. Zbl0457.53034MR614447
- [LT 93] J. LIANG and Q. TANG, Asymptotic behavior of the solutions of an evolutionary Ginzburg-Landau superconductivity model; J. Math. Anal. Appl., Vol. 195 (1995), 92-107. Zbl0845.35118MR1352812
- [Mo 66] C. B. MORREY, Multiple Integrals in the Calculus of Variations; Springer, 1966. Zbl0142.38701
- [MTY 93] S. MULLER, Q. TANG and B. S. YAN; On a new class of elastic deformations not allowing for cavitations, Ann. Inst. H. Poincaré, Analyse Non Linear, Vol. 11 (1994), 217-243. Zbl0863.49002MR1267368
- [Ne 67] J. NECAS, Les Méthodes Directes en Théorie des Equations Elliptique; Masson, 1967. MR227584
- [T 95] Q. TANG, On a evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux; Commun in Partial Differential Equations, 20 (1 and 2) (1995), 1-36. Zbl0833.35132MR1312698
- [TW 95] Q. TANG and S. WANG, Time dependent Ginzburg-Landau equations of superconductivity, Physica D, Vol. 8 (1995), 139-166. Zbl0900.35371MR1360881
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.