Mechanical design problems with unilateral contact

Michal Kočvara; Michael Zibulevsky; Jochem Zowe

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 3, page 255-281
  • ISSN: 0764-583X

How to cite

top

Kočvara, Michal, Zibulevsky, Michael, and Zowe, Jochem. "Mechanical design problems with unilateral contact." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.3 (1998): 255-281. <http://eudml.org/doc/193874>.

@article{Kočvara1998,
author = {Kočvara, Michal, Zibulevsky, Michael, Zowe, Jochem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {rigid obstacles; truss topology problem; elastic bodies; general multi-load formulations; discretization; iterative optimization algorithm; penalty-barrier methods},
language = {eng},
number = {3},
pages = {255-281},
publisher = {Dunod},
title = {Mechanical design problems with unilateral contact},
url = {http://eudml.org/doc/193874},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Kočvara, Michal
AU - Zibulevsky, Michael
AU - Zowe, Jochem
TI - Mechanical design problems with unilateral contact
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 3
SP - 255
EP - 281
LA - eng
KW - rigid obstacles; truss topology problem; elastic bodies; general multi-load formulations; discretization; iterative optimization algorithm; penalty-barrier methods
UR - http://eudml.org/doc/193874
ER -

References

top
  1. [1] W. ACHTZIGER. Truss topology design under multiple loading. DFG Report 367, Math. Institut, Univ. of Bayreuth, 1992. 
  2. [2] W. ACHTZIGER. Minimax compliance truss topology subject to multiple loadings. In M. BendsØe and C. Mota-Soares, editors, Topology optimization of trusses, pages 43-54. Kluwer Academic Press, Dortrecht, 1993. MR1250189
  3. [3] W. ACHTZIGER, A. BEN-TAL, M. BENDSØE and J. ZOWE. Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering, 4: 315-345, 1992. Zbl0769.73054MR1196354
  4. [4] G. ALLAIRE and R. KOHN. Optimal design for minimum weight and compliance in plane stress using extremal microstructures. European J. on Mechanics (A/Solids) 12: 839-878, 1993. Zbl0794.73044MR1343090
  5. [5] K. J. BATHE and E. L. WILSON. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976. Zbl0387.65069
  6. [6] A. BEN-TAL and M. BENDSØE. A new iterative method for optimal truss topology design. SIAM J. Optimization, 3: 322-358, 1993. Zbl0780.90076MR1215447
  7. [7] A. BEN-TAL, M. BENDSØE and J. ZOWE. Optimization methods for truss geometry and topology design. Structural Optimization, 7: 141-159, 1994. 
  8. [8] A. BEN-TAL, I. YUZEFOVICH and M. ZIBULEVSKY. Penalty/barrier multiplier methods for minmax and constrained smooth convex programs. Research report 9/92, Optimization Laboratory, Technion-Israel Institute of Technology, Haifa, 1992. 
  9. [9] A. BEN-TAL and M. ZIBULEVSKY. Penalty/barrier multiplier methods: a new class of augmented lagrangian algorithms for large scale convex programming problems. SIAM J. Optimization, 7, 1997. Zbl0872.90068MR1443623
  10. [10] M. BENDSØE, J. GUADES, R. HABER, P. PEDERSEN and J. TAYLOR. An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics, 61: 930-937, 1994. Zbl0831.73036MR1327483
  11. [11] M. P. BENDSØE. Optimization of Structural Topology, Shape and Material, Springer-Verlag, Heidelberg, 1995. Zbl0822.73001MR1350791
  12. [12] J. CEA. Lectures on Optimization. Springer-Verlag, Berlin, 1978. Zbl0409.90050
  13. [13] P. G. CIARLET. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978. Zbl0383.65058MR520174
  14. [14] I. EKELAND and R. TEMAM. Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  15. [15] E. J. HAUG and J. S. ARORAApplied Optimal Design. Wiley, New York, 1979. 
  16. [16] I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVÍŠEKSolution of Variational Inequalities in Mechanics. Springer-Verlag, New-York, 1988. Zbl0654.73019MR952855
  17. [17] F. JARRE, M. KOČVARA and J. ZOWE. Interior point methods for mechanical design problems. SIAM J. Optimization. To appear. Zbl0912.90231
  18. [18] A. KLARBRING, J. PETERSSON and M. RÖNNQUIST. Truss topology optimization involving unilateral contact. J. Optimization Theory and Applications, 87, 1995. Zbl0841.73046
  19. [19] M. KOČVARA and J. ZOWE. How mathematics can help in design of mechanical structures. In. D.F. Griffiths and G.A. Watson, eds., Numerical Analysis 1995, Longman, Harlow, 1996, pp. 76-93. Zbl0858.73059
  20. [20] J. PETERSSONOn stiffness maximization of variable thickness sheet with unilateral contact. Quarterly of Applied Mathematics, 54: 541-550, 1996. Zbl0871.73046MR1402408
  21. [22] J. PETERSSON and J. HASLINGER. An approximation theory for optimum sheet in unilateral contact. Quarterly of Applied Mathematics. To appear. Zbl0960.74051MR1622499
  22. [23] J. PETERSSON and A. KLARBRING. Saddle point approach to stiffness optimization of discrete structures including unilateral contact. Control and Cybernetics, 3: 461-479, 1994. Zbl0820.73053MR1303365
  23. [24] J. PETERSSON and M. PATRIKSSON. Topology optimization of sheets in contact by a subgradient method. International Journal for Numerical Methods in Engineerings. To appear. Zbl0890.73046MR1449228
  24. [25] R. POLYAK. Modified barrier fonctions: Theory and methods. Mathematical Programming, 54: 177-222, 1992. Zbl0756.90085MR1158819
  25. [26] R. T. ROCKAFELLARA dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming, 5: 354-373, 1973. Zbl0279.90035MR371416
  26. [27] R. T. ROCKAFELLARConvex Analysis. Princeton University Press, Princeton, New Jersey, 1970. Zbl0193.18401MR274683
  27. [28] P. TSENG and D. P. BERTSEKASOn the convergence of the exponential multiplier method for convex programming. Mathematical Programming, 60: 1-19, 1993. Zbl0783.90101MR1231274

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.