A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
- Volume: 32, Issue: 4, page 391-404
- ISSN: 0764-583X
Access Full Article
topHow to cite
topWardi, S.. "A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.4 (1998): 391-404. <http://eudml.org/doc/193879>.
@article{Wardi1998,
author = {Wardi, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {contracting mapping; viscous heating; nonlinear Stokes operator; Poisson equation; method of pseudomonotonicity; regularity assumption},
language = {eng},
number = {4},
pages = {391-404},
publisher = {Dunod},
title = {A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity},
url = {http://eudml.org/doc/193879},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Wardi, S.
TI - A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 4
SP - 391
EP - 404
LA - eng
KW - contracting mapping; viscous heating; nonlinear Stokes operator; Poisson equation; method of pseudomonotonicity; regularity assumption
UR - http://eudml.org/doc/193879
ER -
References
top- [1] R. A. ADAMS, Sobolev Spaces, Academic press. (1975). Zbl0314.46030MR450957
- [2] P. AVENAS, J. F. AGASSANT, J. SERGENT, La mise en forme des matières plastiques, Lavoisier (1982).
- [3] J. BARANGER, A. MIKELIC, Stationary solutions to a quasi-Newtonian flow with viscous heating, Mathematical Models and Methods in applied Sciences, vol. 5-N, pp. 725 738 (1995). Zbl0838.76003MR1348583
- [4] G. CIMATTI, The stationary thermistor problem with a current limiting device, Proc. Royal. Soc. Edinburgh, Sect. A, 116 (1990), pp. 79-84. Zbl0745.35042MR1076354
- [5] R. DAUTRAY, J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 2, "L'opérateur de Laplace", Masson (1987). Zbl0664.47003MR918560
- [6] D. GILBARG, N. S. TRUDINGER, Elliptic Partial Differential. Equations of Second Order, Springer. (1983). Zbl0562.35001MR737190
- [7] S. D. HOWISON, J. F. RODRIGUES, M. SHILLOR, Stationary solutions to the Thermistor problem, Journal Math. Anal., Appl., 174 (1993), pp. 573-588. Zbl0787.35033MR1215637
- [8] O. A. LADYZENSKAYA, N. N. URAL'CEVA, Equations aux dérivées partielles de type elliptique, Dunod, Paris (1968). Zbl0164.13001MR239273
- [9] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villard, Paris (1969). Zbl0189.40603MR259693
- [10] J. L. LIONS, E. MAGENES, Problemi ai limiti non omogenei, Ann. Sc. Norm. Sup. Pisa, 15 (1961), 39-110. MR146526
- [11] N. G. MEYERS, An Lp-estimate for the gradient of solutions of the second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), pp. 189-206. Zbl0127.31904MR159110
- [12] R. TEMAM, Navier-Stokes equations, North-Holland (1979). Zbl0426.35003
- [13] V. V. ZHIKOV, S. SIAN LIN FAN, On some variational problems, Prepulication of Pedacogical. University of Vladimir, Russia (1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.