A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity

S. Wardi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 4, page 391-404
  • ISSN: 0764-583X

How to cite

top

Wardi, S.. "A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.4 (1998): 391-404. <http://eudml.org/doc/193879>.

@article{Wardi1998,
author = {Wardi, S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {contracting mapping; viscous heating; nonlinear Stokes operator; Poisson equation; method of pseudomonotonicity; regularity assumption},
language = {eng},
number = {4},
pages = {391-404},
publisher = {Dunod},
title = {A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity},
url = {http://eudml.org/doc/193879},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Wardi, S.
TI - A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 4
SP - 391
EP - 404
LA - eng
KW - contracting mapping; viscous heating; nonlinear Stokes operator; Poisson equation; method of pseudomonotonicity; regularity assumption
UR - http://eudml.org/doc/193879
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces, Academic press. (1975). Zbl0314.46030MR450957
  2. [2] P. AVENAS, J. F. AGASSANT, J. SERGENT, La mise en forme des matières plastiques, Lavoisier (1982). 
  3. [3] J. BARANGER, A. MIKELIC, Stationary solutions to a quasi-Newtonian flow with viscous heating, Mathematical Models and Methods in applied Sciences, vol. 5-N, pp. 725 738 (1995). Zbl0838.76003MR1348583
  4. [4] G. CIMATTI, The stationary thermistor problem with a current limiting device, Proc. Royal. Soc. Edinburgh, Sect. A, 116 (1990), pp. 79-84. Zbl0745.35042MR1076354
  5. [5] R. DAUTRAY, J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 2, "L'opérateur de Laplace", Masson (1987). Zbl0664.47003MR918560
  6. [6] D. GILBARG, N. S. TRUDINGER, Elliptic Partial Differential. Equations of Second Order, Springer. (1983). Zbl0562.35001MR737190
  7. [7] S. D. HOWISON, J. F. RODRIGUES, M. SHILLOR, Stationary solutions to the Thermistor problem, Journal Math. Anal., Appl., 174 (1993), pp. 573-588. Zbl0787.35033MR1215637
  8. [8] O. A. LADYZENSKAYA, N. N. URAL'CEVA, Equations aux dérivées partielles de type elliptique, Dunod, Paris (1968). Zbl0164.13001MR239273
  9. [9] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villard, Paris (1969). Zbl0189.40603MR259693
  10. [10] J. L. LIONS, E. MAGENES, Problemi ai limiti non omogenei, Ann. Sc. Norm. Sup. Pisa, 15 (1961), 39-110. MR146526
  11. [11] N. G. MEYERS, An Lp-estimate for the gradient of solutions of the second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), pp. 189-206. Zbl0127.31904MR159110
  12. [12] R. TEMAM, Navier-Stokes equations, North-Holland (1979). Zbl0426.35003
  13. [13] V. V. ZHIKOV, S. SIAN LIN FAN, On some variational problems, Prepulication of Pedacogical. University of Vladimir, Russia (1995). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.