Regularity of solutions to a one dimensional plasticity model
- Volume: 32, Issue: 5, page 521-537
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBabuška, I., and Shi, P.. "Regularity of solutions to a one dimensional plasticity model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 521-537. <http://eudml.org/doc/193885>.
@article{Babuška1998,
author = {Babuška, I., Shi, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {H(2)-regularity; H(1)-regularity; quasi-static model; multilinear kinematic law; system of variational inequalities},
language = {eng},
number = {5},
pages = {521-537},
publisher = {Dunod},
title = {Regularity of solutions to a one dimensional plasticity model},
url = {http://eudml.org/doc/193885},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Babuška, I.
AU - Shi, P.
TI - Regularity of solutions to a one dimensional plasticity model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 521
EP - 537
LA - eng
KW - H(2)-regularity; H(1)-regularity; quasi-static model; multilinear kinematic law; system of variational inequalities
UR - http://eudml.org/doc/193885
ER -
References
top- [1] I. BABUŠKA, Y. LI and K. L. JERINA, Rehability of computational analysis of plasticity problems, In Non-linear Computational Mechanics, P. Wriggers and W. Wagner Eds, Springer-verlag, 1991.
- [2] I. BABUŠKA and P. SHI, A continuous Galerkin method in one dimensional plasticity, in preparation.
- [3] P. BENILAN, M. G. GRANDALL and P. SACKS, Some Ll existence and dependence results for semilinear elliptic equationsunder non linear boundary conditions, Appl. Math. Optim. Vol. 17. 1988, pp. 203-224. Zbl0652.35043MR922980
- [4] G. DUVAULT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Zbl0331.35002MR600341
- [5] I. EKELAND and R. TEMAM, Convex analysis and variational problems, North-Holland, 1976. Zbl0322.90046MR463994
- [6] W. HAN and B. D. REDDY, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances, 2, No. 2, 1995. Zbl0847.73078MR1361227
- [7] I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVIŠEK, Solutions of variational inequalities in mechanics, Springer-Verlag, 1988. Zbl0654.73019MR952855
- [8] C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pure et Appl., 55, pp. 431-444 (1976). Zbl0351.73049MR438867
- [9] C. JOHNSON, On plasticity with hardening, J. Math. Anal. Appl., 62, pp. 333-344 (1978). Zbl0373.73049MR489198
- [10] M. A. KRASNOSEL'SKII and A. V. POKROVSKII, Systems with Hysteresis (in Russian), Nauka, Moscow, 1983 (English edition: Springer 1989). MR987431
- [11] P. KREJĆĬ, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Springer, 1996. Zbl1187.35003MR2466538
- [12] Y. LI and I. BABUŠKA, A convergence analysis of an H-version finite element method with high order elements for two dimensional elasto-plastic problems, SIAM J. Numer. Anal., to appear. Zbl0879.73070MR1451111
- [13] J. LUBLINER, Plasticity Theory, Macmillan Publishing Company, New York, 1990. Zbl0745.73006
- [14] J. LEMAITRE and J. L. CHABOCHE, Mechanics of Solid Materials, Cambridge University Press, 1985. Zbl0743.73002
- [15] G. MAUGIN, The Thermodynamics of Plasticity and Fracture, Cambridge University Press, 1992. Zbl0753.73001MR1173212
- [16] A. VISINTIN, Differential Models of Hysteresis, Springer, 1994. Zbl0820.35004MR1329094
- [17] M. ZYZCKOWSKI, Combined Loading in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981. Zbl0497.73036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.