Nested sequences of Chebyshev spaces and shape parameters

Marie-Laurence Mazure; Pierre-Jean Laurent

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 6, page 773-788
  • ISSN: 0764-583X

How to cite

top

Mazure, Marie-Laurence, and Laurent, Pierre-Jean. "Nested sequences of Chebyshev spaces and shape parameters." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.6 (1998): 773-788. <http://eudml.org/doc/193898>.

@article{Mazure1998,
author = {Mazure, Marie-Laurence, Laurent, Pierre-Jean},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Bézier points; blossoming; shape parameters; Chebyshev spaces},
language = {eng},
number = {6},
pages = {773-788},
publisher = {Dunod},
title = {Nested sequences of Chebyshev spaces and shape parameters},
url = {http://eudml.org/doc/193898},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Mazure, Marie-Laurence
AU - Laurent, Pierre-Jean
TI - Nested sequences of Chebyshev spaces and shape parameters
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 6
SP - 773
EP - 788
LA - eng
KW - Bézier points; blossoming; shape parameters; Chebyshev spaces
UR - http://eudml.org/doc/193898
ER -

References

top
  1. [1] P. J. BARRY, de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation 12 (1996), 385-408. Zbl0854.41010MR1405005
  2. [2] P. J. BARRY, N. DYN, R. N. GOLDMAN and C. A. MICCHELLI, Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Mathematicae 42 (1991), 123-136. Zbl0769.41007MR1125625
  3. [3] D. BISTER and H. PRAUTZSCH, A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications to CAGD, Vanderbilt University Press (1997), 35-42. Zbl0938.65020MR1659765
  4. [4] N. DYN, A. EDELMAN and C. A. MICHELLI, On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987), 313-341. Zbl0633.41005MR928645
  5. [5] N. DYN and A. RON, Recurrence relations for Tchebycheffian B-splines, Journal d'Analyse Mathématique 51 (1988), 118-138. Zbl0675.41021MR963152
  6. [6] S. KARLIN, Total Positivity, Stanford University Press, Stanford, 1968. Zbl0219.47030MR230102
  7. [7] S. KARLIN and W. J. STUDDEN, Tchebycheff Systems, Wiley Interscience, New York, 1966. Zbl0153.38902MR204922
  8. [8] S. KARLIN and Z. ZIEGLER, Chebyshevian spline functions, SIAM Journal Numerical Analysis 3 (1966), 514-543. Zbl0171.31002MR216206
  9. [9] R. KULKARNI and P.-J. LAURENT, Q-splines, Numerical Algorithms 1 (1991), 45-74. Zbl0797.65003MR1135287
  10. [10] R. KULKARNI, P.-J. LAURENT and M.-L. MAZURE, Non affine blossoms and subdivision for Q-splines, in Math. Methods in Computer Aided Geometric Design II, Academic Press, New York, 1992, 367-380. MR1172817
  11. [11] P.-J. LAURENT, M.-L. MAZURE and V. T. MAXIM, Chebyshev splines and shape parameters, RR 980M IMAG, Université Joseph Fourier, Grenoble, September 1997, Numerical Algorithms 15 (1997), 373-383. Zbl0891.65013MR1605676
  12. [12] P.-J. LAURENT, M.-L. MAZURE and G. MORIN, Shape effects with polynomial Chebyshev splines, in Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, 1997, 255-262. Zbl0938.65019MR1659752
  13. [13] T. LYCHE, A recurrence relation for Chebyshevian B-splines, Constructive Approximation 1 (1985), 155-173. Zbl0583.41011MR891537
  14. [14] M.-L. MAZURE, Blossoming of Chebyshev splines, In Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, 1995, 355-364. Zbl0835.65033MR1356981
  15. [15] M.-L. MAZURE, Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble, January 1996. 
  16. [16] M.-L. MAZURE, Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble, January 1996. 
  17. [17] M.-L. MAZURE, Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Constructive Approximation. Zbl0924.65010MR1660085
  18. [18] M.-L. MAZURE, Vandermonde type determinants and blossoming, The Fourth International Conference on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway, July 3-8, 1997, RR 979M IMAG, Université Joseph Fourier, Grenoble, September 1997, Advances in Computational Math. 8 (1998), 291-315. Zbl0906.65014MR1637609
  19. [19] M.-L. MAZURE and P.-J. LAURENT, Affine and non affine blossoms, in Computational Geometry, World Scientific, 1993, 201-230. MR1339313
  20. [20] M.-L. MAZURE and P.-J. LAURENT, Marsden identities, blossoming and de Boor-Fix formula, in Advanced Topics in Multivariate Approximation, World Scientific Pub., 1996, 227-242. Zbl1273.41029MR1661413
  21. [21] M.-L. MAZURE and P.-J. LAURENT, Piecewise smooth spaces in duality: application to blossoming, RR696-M, IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Journal of Approximation Theory. Zbl0952.41010MR1692244
  22. [22] M.-L. MAZURE and P.-J. LAURENT, Polynomial Chebyshev Splines, to appear. Zbl0916.68152MR1688408
  23. [23] M.-L. MAZURE and H. POTTMANN, Tchebycheff curves, in Total Positivity and its Applications, Kluwer Academic Pub. (1996), 187-218. Zbl0902.41018MR1421603
  24. [24] C. A. MICCHELLI, Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Math. 65, SIAM, Philadelphie, 1995. Zbl0864.65008MR1308048
  25. [25] H. POTTMANN, The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181-210. Zbl0777.41016MR1235152
  26. [26] H. POTTMANN and M. G. WAGNER, Helix splines as an example of affine Tchebycheffian splines, Advances in Computational Math. 2 (1994), 123-142. Zbl0832.65008MR1266027
  27. [27] L. RAMSHAW, Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. Zbl0705.65008MR1030618
  28. [28] L. L. SCHUMAKER, Spline Functions: Basic Theory, Wiley Interscience, New York, 1981. Zbl0449.41004MR606200
  29. [29] H.-P. SEIDEL, New algorithms and techniques for Computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling and Numerical Analysis 26 (1992), 149-176. Zbl0752.65008MR1155005
  30. [30] M. G. WAGNER and H. POTTMANN, Symmetric Tchebycheffian B-splines schemes, in Curves and Surfaces in Geometric Design, A. K. Peters, Wellesley, MA, 1994, 483-490. Zbl0814.65008MR1302230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.