New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree

H.-P. Seidel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 149-176
  • ISSN: 0764-583X

How to cite

top

Seidel, H.-P.. "New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 149-176. <http://eudml.org/doc/193651>.

@article{Seidel1992,
author = {Seidel, H.-P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {computer graphics; computational geometry; object modeling; de Boor algorithm; -spline; connection matrix; geometric continuity; universal splines; spline control points; Bézier points; knot insertion; multidimensional modeling},
language = {eng},
number = {1},
pages = {149-176},
publisher = {Dunod},
title = {New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree},
url = {http://eudml.org/doc/193651},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Seidel, H.-P.
TI - New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 149
EP - 176
LA - eng
KW - computer graphics; computational geometry; object modeling; de Boor algorithm; -spline; connection matrix; geometric continuity; universal splines; spline control points; Bézier points; knot insertion; multidimensional modeling
UR - http://eudml.org/doc/193651
ER -

References

top
  1. [1] B. A. BARSKY, The Beta-spline : a local représentation based on shape parameters and fundamental geometric measures, PhD Dissertation, Univ. of Utah, Salt Lake City, USA, 1981. 
  2. [2] B. A. BARSKY and J. C. BEATTY, Local control of bias and tension in Beta-splines, ACM Trans. Graph. 2, 109-134, 1983. Zbl0584.65004
  3. [3] B. A. BARSKY, Computer Graphics and Geometric Modelling Using Beta-splines, Springer, 1988. Zbl0648.65008MR949915
  4. [4] B. A. BARSKY, Introducing the rational Beta-spline, Proc. 3rd Int. Conf. Eng. Graphics Descr. Geometry, Vienna, 1988. MR1011496
  5. [5] B. A. BARSKY and T. D. DEROSE, Geometric continuity of parametric curves : Three equivalent characterizations, IEEE Comput. Graph. Appl 9(5), 60-68, 1989. 
  6. [6] B. A. BARSKY and T. D. DEROSE, Geometric continuity of parametric curves : Constructions of geometrically continuous splines, IEEE Comput. Graph. Appl. 60-68, 1990. 
  7. [7] R. H. BARTELS and J. C. BEATTY, Beta-splines with a difference, Technical Report CS-83-40, Dept. of Computer Science, Univ. of Waterloo, 1983. 
  8. [8] R. H. BARTELS, J. C. BEATTY and B. A. BARSKY, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, 1987. Zbl0682.65003MR919732
  9. [9] W. BOEHM, Inserting new knots into a B-spline curve, Comput. Aided Design, 12, 50-62, 1980. 
  10. [10] W. BOEHM, G. FARIN and J. KAHMANN, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, 1-60, 1984. Zbl0604.65005
  11. [11] W. BOEHM, Curvature continuous curves and surfaces, Comput. Aided Geom. Design 2, 313-323, 1985. Zbl0645.53002MR824102
  12. [12] W. BOEHM, Smooth curves and surfaces, in : Farin, G. (ed.), Geometric Modeling, Algorithms and New Trends, SIAM, 1987. MR936453
  13. [13] W. BOEHM, Rational geometric splines, Comput. Aided Geom. Design 4, 67-77, 1987. Zbl0632.65005MR898024
  14. [14] C. DE BOOR, On calculating with B-splines, J. Approx. Theory 6, 50-62, 1972. Zbl0239.41006MR338617
  15. [15] C. DE BOOR, A Pratical Guide to Splines, Springer, New York, 1978. Zbl0406.41003MR507062
  16. [16] P. DE CASTELJAU, Formes à pôles, Hermes, Paris, 1985. Zbl0655.41001
  17. [17] P. DE CASTELJAU, Shape Mathematics and CAD, Kogan Page Ltd, London, 1986. 
  18. [18] B. W. CHAR et al., Maple Reference Manual, 5th ed., Watcom Publ. Ltd, Waterloo, 1988. 
  19. [19] E. COHEN, T. LYCHE and R. F. RIESENFELD, Discrete B-splines and subdivision techniques in computer aided geometric design and computer graphics, Comput. Graph. Image Process. 14, 87-111, 1980. 
  20. [20] E. COHEN, A new local basis for designing with tensioned splines, ACM Trans. Graph. 6(2), 81-122, 1987. 
  21. [21] H. S. M. COXETER, Introductin to Geometry, Wiley, New York, 1961. Zbl0095.34502MR178389
  22. [22] T. D. DEROSE, Geometric continuity : a parametrization independent measure of continuity for computer aided geometric design, PhD Dissertation, UC Berkeley, Berkeley, U.S.A., 1985. 
  23. [23] T. D. DEROSE and B. A. BARSKY, Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines, ACM Trans. Graph. 7, 1-41, 1988. Zbl0646.65010
  24. [24] P. DIERCKX and B. TYTGAT, Inserting new knots into Beta-spline curves, in : Lyche, T. and Schumaker, L. L. (eds.), Mathematical Methods in Computer Aided Geometric Design 195-206, Academic Press, 1989. Zbl0693.41014MR1022708
  25. [25] P. DIERCKX and B. TYTGAT, Generating the Bezier points of a β-spline curve, Comput. Aided. Geom. Design 6, 279-291, 1989. Zbl0682.65004MR1030615
  26. [26] N. DYN, A. EDELMANN and C. A. MICCHELLI, A locally supported basis function for the representation of geometrically continuous curves, Analysis 7, 313-341, 1987. Zbl0633.41005MR928645
  27. [27] N. DYN and C. A. MICCHELLI, Piecewise polynomial spaces and geometric continuity of curves, IBM Res. Rep. Mathematical Sciences Dept., IBM T. J. Watson Research Center, Yorktown Heights, N.Y., 1985. Zbl0638.65010
  28. [28] M. ECK and D. LASSER, B-spline-Bezier representation of geometric spline curves, Preprint 1254, FB. Mathematik, TH. Darmstadt, 1989. Zbl0762.65004
  29. [29] M. ECK, Algorithms for geometric spline curves, Preprint 1309, FB Mathematik, TH. Darmstadt, 1990. Zbl0799.41011MR1170133
  30. [30] G. E. FARIN, Visually C2-cubic splines, Comput. Aided Design. 14, 137-139, 1982. 
  31. [31] G. E. FARIN, Some remarks on V2-splines, Comput. Aided Geom. Design 2, 325-328, 1985. Zbl0598.41015MR824103
  32. [32] G. E. FARIN, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1988. Zbl0694.68004MR974109
  33. [33] G. GEISE, Über berührende kegelschnitte einer ebenen Kurve, Z. Angew Math. Mech. 42(7/8), 297-304, 1962. Zbl0105.14801
  34. [34] R. N. GOLDMAN and C. A. MICCHELLI, Algebraic aspects of geometric continuity, in Lyche, T. And Schumarker, L. L. (eds.), Mathematical Methods in Computer Aided Geometric Design, 313-332, Academic Press, 1989. Zbl0679.65006MR1022716
  35. [35] R. N. GOLDMAN and B. A. BARSKY, On Beta-continuous functions and their application to the construction of geometrically continuous curves and surfaces, in : Lyche, T. and Schumaker, L. L. (eds.), Mathematical Methods in Computer Aided Geometric Design, 299-312, Academic Press, 1989. Zbl0692.41018MR1022715
  36. [36] R. N. GOLDMAN, Blossoming and knot algorithms for B-spline curves, to appear in Comput. Aided Geom. Design. MR1074600
  37. [37] T. N. T. GOODMAN, Properties of Beta-splines, J. Approx. Theory 44, 132-153, 1985. Zbl0569.41010MR794596
  38. [38] T. N. T GOODMAN and K. UNSWORTH, Generation of Beta-spline curves using a recurrence relation, in : Earnashaw, R. (ed.), Fundamental Algorithms for Computer Graphics, 325-357, Springer, 1985. 
  39. [39] T. N. T GOODMAN and C. A. MICCHELLI, Corner cutting algorithms for the Bézier representation of free from curves, IBM Research Report RC 12139, IBM T. J. Watson Research Center, Yorktown Heights, N. Y., 1986. Zbl0652.41003
  40. [40] T. N. T GOODMAN and K. UNSWORTH, Manipulating shape and producing geometric continuity in Beta-spline curves, IEEE Comput. Graph. Appl. 6(2), 50-56, 1986. 
  41. [41] T. N. T GOODMAN, Constructing piecewise rational curves with Frenet frame continuity, to appear, in Comput. Aided. Geom. Design. Zbl0709.65010MR1074596
  42. [42] J. GREGORY, Geometric continuity, in : Lyche, T. and Schumaker, L. L. (eds.), Mathematical Methods in Computer Aided Geom. Design, Academic Press, 1989. Zbl0675.41023MR1022718
  43. [43] H. HAGEN, Geometric spline curves, Comput. Aided Geom. Design 2, 223-227, 1985. Zbl0577.65006MR828548
  44. [44] M. E. HOHMEYER and B. A. BARSKY, Rational Continuity : Parametric, Geometric, and Frenet Frame Continuity of Rational Curves, ACM Trans. Graph. 8(4), 1989. Zbl0746.68095
  45. [45] J. HOSCHEK and D. LASSER, Grundlagen der geometrischen Datenverarbeitung, Teubner, 1989. Zbl0682.68002MR1055828
  46. [46] B. JOE, Rational Beta-spline curves and surfaces and discrete Beta-splines, Technical Report TR 87-04, Dept. of Computing Science, Univ. of Alberta, 1987. 
  47. [47] B. JOE, Quatric Beta-splines, Technical Report TR 87-11, Dept. of Computing Science, Univ. of Alberta, 1987. 
  48. [48] B. JOE, Discrete Beta-splines, Computer Graphics 21(4) (Proc. SIG-GRAPH'87), 137-144, 1987. MR987652
  49. [49] B. JOE, Multiple-knot and rational cubic β-splines, ACM Trans. Graph. 8(2), 100-120, 1989. Zbl0746.68096
  50. [50] D. LASSER and M. ECK, Bézier representation of geometric spline curves, Technical Report NPS-53-88-004, Naval Postgraduate Schoo, Monterey, 1988. Zbl0762.65004
  51. [51] G. M. NIELSON, Some piecewise polynomial alternatives to splines under tension, in : Barnhill, R. E. and Riesenfeld, R. F. (eds.), Computer Aided Geometric Design, Academic Press, 1974. MR371012
  52. [52] H. POTTMANN, Curves and tensor product surfaces with third order geometric continuity, Proc. 3rd Int. Conf. Eng. Graphics Descr. Geometry, Vienna, 1988. MR1011527
  53. [53] H. POTTMANN, Projectively invariant classes of geometric continuity, Comput. Aided Geom. Design 6, 307-322, 1989. Zbl0684.65011MR1030617
  54. [54] H. PRAUTZSCH, A round trip to B-splines via de Casteljau, ACM Trans. Graph. 8(3), 243-254, 1989. Zbl0746.68099
  55. [55] L. RAMSHAW, BLOSSOMING : A connect-the-dots approach to splines, Digital Systems Research Center, Palo Alto, 1987. 
  56. [56] L. RAMSHAW, Béziers and B-splines as multiaffine maps, in : Theoretical Foundations of Computer Graphics and CAD, 757-776, Springer, 1988. MR944723
  57. [57] L. RAMSHAW, Blossoms are polar forms, Comput. Aided Geom. Design 6, 323-358, 1989. Zbl0705.65008MR1030618
  58. [58] L. L. SCHUMAKER, Spline Functions : Basic Theory, John Wiley & Sons, New York, 1981. Zbl0449.41004MR606200
  59. [59] H.-P. SEIDEL, Knot insertion from a blossoming point of view, Comput. Aided Geom. Design 5, 81-86, 1988. Zbl0665.65009MR945308
  60. [60] H.-P. SEIDEL, A new multiaffine approach to B-splines, Comput. Aided Geom. Design 6, 23-32, 1989. Zbl0666.65011MR983469
  61. [61] H.-P. SEIDEL, Polynome, Splines und symmetrische rekursive Algorithmen im Computer Aided Geometric Design, Habilitationsschrift, Tübingen, 1989. 
  62. [62] H.-P. SEIDEL, Geometric Constructions and Knot Insertion for Geometrically Continuous Spline Curves of Arbitrary Degree, Research Report CS-90-24, Department of Computer Science, University of Waterloo, Waterloo, 1990. 
  63. [63] M. C. STONE and T. D. DEROSE, A geometric characterization of parametric cubic curves, ACM Trans. Graph. 8, 147-163, 1989. Zbl0746.68102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.