Global BV solutions for a model of multi-species mixture in porous media

Youcef Amirat; Yue-Jun Peng

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 7, page 877-895
  • ISSN: 0764-583X

How to cite

top

Amirat, Youcef, and Peng, Yue-Jun. "Global BV solutions for a model of multi-species mixture in porous media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 877-895. <http://eudml.org/doc/193903>.

@article{Amirat1998,
author = {Amirat, Youcef, Peng, Yue-Jun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {compressible miscible displacement of chemical species; initial-boundary value problem; equation of parabolic type; semilinear hyperbolic system; global weak solution},
language = {eng},
number = {7},
pages = {877-895},
publisher = {Dunod},
title = {Global BV solutions for a model of multi-species mixture in porous media},
url = {http://eudml.org/doc/193903},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Amirat, Youcef
AU - Peng, Yue-Jun
TI - Global BV solutions for a model of multi-species mixture in porous media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 877
EP - 895
LA - eng
KW - compressible miscible displacement of chemical species; initial-boundary value problem; equation of parabolic type; semilinear hyperbolic system; global weak solution
UR - http://eudml.org/doc/193903
ER -

References

top
  1. [1] Y. A. ALKHUTOV and I. T. MAMEDOV, The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients, Amer. Math. Soc, 59, p. 471-495, 1988. Zbl0663.35033MR881909
  2. [2] Y. AMIRAT and M. MOUSSAOUI, Analysis of a one-dimensional model for compressible miscible displacement in porous media, SIAM J. Math. Anal. 26-3, p. 659-674, 1995. Zbl0832.35014MR1325908
  3. [3] Y. AMIRAT, K. HAMDACHE and A. ZIANI, Homogenization of a one-dimensional model for compressible miscible flow in porous media, preprint LMA 94-11, Univ. Blaise Pascal (France), 1994. Zbl0727.76093
  4. [4] Y. AMIRAT, K. HAMDACHE and A. ZIANI, Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux, C. R. Acad. Sci. Paris, t. 321, Sériel, p. 253-258, 1995. Zbl0838.76086MR1345458
  5. [5] Y. AMIRAT, K. HAMDACHE and A. ZIANI, Mathematical analysis for compressible miscible displacement models in porous media, Math, Models Meth. in the Appl. Sc., 6 (6), 729-747 (1996). Zbl0859.35087MR1404826
  6. [6] Y. AMIRAT and Y. J. PENG, Compressible miscible displacement for multi-species mixture in porous media, preprint LMA 96-8, Univ. Blaise Pascal (France), 1996. 
  7. [7] J. P. AUBIN, Un théorème de compacité, C. R. Acad. Sci., 256, p. 5042-5044, 1963. Zbl0195.13002MR152860
  8. [8] J. BEAR, Dynamics of fluids in porous media, American Elsevier, 1972. Zbl1191.76001
  9. [9] J. DOUGLAS, Numerical methods for the flow of miscible fluids in porous media, in Numerical methods in coupled Systems, eds. R. W. Lewis, P. Bettes and E. Hinton, p. 405-439, John Wiley, 1984. Zbl0585.76138
  10. [10] J. DOUGLAS and J. E. ROBERTS, Numerical methods for a model of compressible miscible displacement in porous media, Math, of Computation, 41-164, p. 441-459, 1983. Zbl0537.76062MR717695
  11. [11] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, 1976. Zbl0331.35002MR521262
  12. [12] A. V. KHAZHIKHOV and V. V. SHELUKIN, Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, PMM 41-2, p. 282-291, 1977. Zbl0393.76043MR468593
  13. [13] O. A. LADYZHENSKAJA, V. A. SOLONNIKOV and N. N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Trans. of Math. Monographs, 28, 1968. 
  14. [14] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villard, 1969. Zbl0189.40603MR259693
  15. [15] D.W. PEACEMAN, Fundamentals of numerical reservoir simulation, Elsevier, 1977. 
  16. [16] A. E. SCHEIDEGGER, The physics of flow through porous media, Univ. Toronto Press, 1974. Zbl0095.22402
  17. [17] D. SERRE, Existence globale de solutions faibles des équations de Navier-Stokes d'un fluide compressible en dimension 1, Sem. Collège de France, X, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.