Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale
- Volume: 33, Issue: 1, page 169-189
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGuermond, Jean-Luc. "Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 169-189. <http://eudml.org/doc/193909>.
@article{Guermond1999,
author = {Guermond, Jean-Luc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimation; fractional step; Chorin-Temam projection method; three-level backward finite difference; Galerkin technique; splitting error},
language = {fre},
number = {1},
pages = {169-189},
publisher = {Dunod},
title = {Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale},
url = {http://eudml.org/doc/193909},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Guermond, Jean-Luc
TI - Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 169
EP - 189
LA - fre
KW - error estimation; fractional step; Chorin-Temam projection method; three-level backward finite difference; Galerkin technique; splitting error
UR - http://eudml.org/doc/193909
ER -
References
top- [1] C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad. 67 (1991) 171-175. Zbl0752.35047MR1114965
- [2] I. Babŭska, The finite element method with Lagragian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108MR359352
- [3] C. Bernardi and G. Raugel, A conforming finite element method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 22 (1985) 455-473. Zbl0578.65122MR787570
- [4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
- [5] F. Brezzi, On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO R2 (1974) 129-151. Zbl0338.90047MR365287
- [6] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. Zbl0116.18002MR138894
- [7] A.J. Chorin, Numerical solution of the Navier-Stokes equations Math. Comp 22 (1968) 745-762. Zbl0198.50103MR242392
- [8] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comp. 23 (1969) 341-353. Zbl0184.20103MR242393
- [9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics 5 Springer-Verlag (1986). Zbl0585.65077MR851383
- [10] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows J.Comput. Phys. 30 (1979) 76-95. Zbl0405.76017
- [11] J.-L. Guermond, Some practical implementations of projection methods for Navier-Stokes equations. RAIRO Modél. Math.Anal. Numér. 30 (1996) 637-667. Zbl0861.76065MR1411394
- [12] J.-L. Guermond, Sur l'approximation des équations de Navier-Stokes instationnaires par une méthode de projection. C. R.Acad. Sci. Paris 319 (1994) 887-892. Zbl0813.76066MR1300962
- [13] J.-L. Guermond and L. Quartapelle, Unconditionally stable Finite-Element Method for the unsteady Navier-Stokes equations, 9th International Conference on Finite Element in Fluids. Venezia, Italy, October 1995 I 367-376.
- [14] J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection finite element method. J. Comput. Phys. 132 (1997) 12-33. Zbl0879.76050MR1440332
- [15] J.-L. Guermond and L. Quartapelle, On the approximation of the Navier-Stokes equations by finite element projection methods Numer. Math. 80 (1998) 207-238. Zbl0914.76051MR1645029
- [16] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, I, II, III, and IV. SIAM J. Numer. Anal. 19 (1982) 275-311, 23 (1986) 750-777; 25 (1988) 489-512, 27 (1990) 353-384. Zbl0611.76036
- [17] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, ISNM 113 Birkhâuser, Basel (1993). Zbl0784.76020MR1266843
- [18] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag (1994). Zbl0803.65088MR1299729
- [19] R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations. Lectures Notes in MathematicsSpringer, Berlin (1992) 167-183. Zbl0769.76053MR1226515
- [20] R. Temam, Navier-Stokes Equations. Studies in Mathematics and its Applications, Vol 2. North-Holland (1977). Zbl0383.35057MR609732
- [21] R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968)115-152. Zbl0181.18903MR237972
- [22] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (1986) 870-891. Zbl0594.76023MR848569
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.