On the stability of chaotic functions
Časopis pro pěstování matematiky (1987)
- Volume: 112, Issue: 4, page 351-354
- ISSN: 0528-2195
Access Full Article
topHow to cite
topJanková, Katarína. "On the stability of chaotic functions." Časopis pro pěstování matematiky 112.4 (1987): 351-354. <http://eudml.org/doc/19391>.
@article{Janková1987,
author = {Janková, Katarína},
journal = {Časopis pro pěstování matematiky},
keywords = {stability; small perturbations; periodic point; chaotic functions; scrambled sets},
language = {eng},
number = {4},
pages = {351-354},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On the stability of chaotic functions},
url = {http://eudml.org/doc/19391},
volume = {112},
year = {1987},
}
TY - JOUR
AU - Janková, Katarína
TI - On the stability of chaotic functions
JO - Časopis pro pěstování matematiky
PY - 1987
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 112
IS - 4
SP - 351
EP - 354
LA - eng
KW - stability; small perturbations; periodic point; chaotic functions; scrambled sets
UR - http://eudml.org/doc/19391
ER -
References
top- Bau Sen Du, A chaotic function whose nonwandering set is the Cantor ternary set, Proc. Amer. Math. Soc. 92 (1984), 277-278. (1984) Zbl0592.26007MR0754720
- I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. (1984) MR0749887
- P. E. Kloeden, Chaotic diffeгence equations are dense, Bull. Austral. Math. Soc. 15 (1976), 371-379. (1976) MR0432829
- T. Li Y. Yorke, Period three implies chaos, Ameг. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
- M. Misiurewicz, Chaos almost everywhere. Iteration Theoгy and its Functional Equations, (editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). (1985) MR0829765
- M. B. Nathanson, Piecewise linear functions with almost all points eventually periodic, Proc. Amer. Math. Soc. 60 (1976), 75-81. (1976) MR0417351
- J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. (1983) MR0677230
- J. Smítal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. (1984) MR0749888
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.