On the stability of chaotic functions

Katarína Janková

Časopis pro pěstování matematiky (1987)

  • Volume: 112, Issue: 4, page 351-354
  • ISSN: 0528-2195

How to cite

top

Janková, Katarína. "On the stability of chaotic functions." Časopis pro pěstování matematiky 112.4 (1987): 351-354. <http://eudml.org/doc/19391>.

@article{Janková1987,
author = {Janková, Katarína},
journal = {Časopis pro pěstování matematiky},
keywords = {stability; small perturbations; periodic point; chaotic functions; scrambled sets},
language = {eng},
number = {4},
pages = {351-354},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On the stability of chaotic functions},
url = {http://eudml.org/doc/19391},
volume = {112},
year = {1987},
}

TY - JOUR
AU - Janková, Katarína
TI - On the stability of chaotic functions
JO - Časopis pro pěstování matematiky
PY - 1987
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 112
IS - 4
SP - 351
EP - 354
LA - eng
KW - stability; small perturbations; periodic point; chaotic functions; scrambled sets
UR - http://eudml.org/doc/19391
ER -

References

top
  1. Bau Sen Du, A chaotic function whose nonwandering set is the Cantor ternary set, Proc. Amer. Math. Soc. 92 (1984), 277-278. (1984) Zbl0592.26007MR0754720
  2. I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. (1984) Zbl0592.26005MR0749887
  3. P. E. Kloeden, Chaotic diffeгence equations are dense, Bull. Austral. Math. Soc. 15 (1976), 371-379. (1976) MR0432829
  4. T. Li Y. Yorke, Period three implies chaos, Ameг. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
  5. M. Misiurewicz, Chaos almost everywhere. Iteration Theoгy and its Functional Equations, (editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). (1985) MR0829765
  6. M. B. Nathanson, Piecewise linear functions with almost all points eventually periodic, Proc. Amer. Math. Soc. 60 (1976), 75-81. (1976) Zbl0339.26008MR0417351
  7. J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. (1983) MR0677230
  8. J. Smítal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. (1984) MR0749888

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.