Page 1 Next

Displaying 1 – 20 of 523

Showing per page

A characterization of ω-limit sets for piecewise monotone maps of the interval

Andrew D. Barwell (2010)

Fundamenta Mathematicae

For a piecewise monotone map f on a compact interval I, we characterize the ω-limit sets that are bounded away from the post-critical points of f. If the pre-critical points of f are dense, for example when f is locally eventually onto, and Λ ⊂ I is closed, invariant and contains no post-critical point, then Λ is the ω-limit set of a point in I if and only if Λ is internally chain transitive in the sense of Hirsch, Smith and Zhao; the proof relies upon symbolic dynamics. By identifying points of...

A class of continua that are not attractors of any IFS

Marcin Kulczycki, Magdalena Nowak (2012)

Open Mathematics

This paper presents a sufficient condition for a continuum in ℝn to be embeddable in ℝn in such a way that its image is not an attractor of any iterated function system. An example of a continuum in ℝ2 that is not an attractor of any weak iterated function system is also given.

A class of spaces that admit no sensitive commutative group actions

Jiehua Mai, Enhui Shi (2012)

Fundamenta Mathematicae

We show that a metric space X admits no sensitive commutative group action if it satisfies the following two conditions: (1) X has property S, that is, for each ε > 0 there exists a cover of X which consists of finitely many connected sets with diameter less than ε; (2) X contains a free n-network, that is, there exists a nonempty open set W in X having no isolated point and n ∈ ℕ such that, for any nonempty open set U ⊂ W, there is a nonempty connected open set V ⊂ U such that the boundary X ( V ) ...

A classification of inverse limit spaces of tent maps with periodic critical points

Lois Kailhofer (2003)

Fundamenta Mathematicae

We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps f a , f b with periodic critical points, we show that the inverse limit spaces ( a , f a ) and ( b , g b ) are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.

A generalization of semiflows on monomials

Hamid Kulosman, Alica Miller (2012)

Mathematica Bohemica

Let K be a field, A = K [ X 1 , , X n ] and 𝕄 the set of monomials of A . It is well known that the set of monomial ideals of A is in a bijective correspondence with the set of all subsemiflows of the 𝕄 -semiflow 𝕄 . We generalize this to the case of term ideals of A = R [ X 1 , , X n ] , where R is a commutative Noetherian ring. A term ideal of A is an ideal of A generated by a family of terms c X 1 μ 1 X n μ n , where c R and μ 1 , , μ n are integers 0 .

A geometric proof of the Perron-Frobenius theorem.

Alberto Borobia, Ujué R. Trías (1992)

Revista Matemática de la Universidad Complutense de Madrid

We obtain an elementary geometrical proof of the classical Perron-Frobenius theorem for non-negative matrices A by using the Brouwer fixed-point theorem and by studying the dynamics of the action of A on convenient subsets of Rn.

Currently displaying 1 – 20 of 523

Page 1 Next