Minimax optimal control problems. Numerical analysis of the finite horizon case

Silvia C. Di Marco; Roberto L. V. González

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 23-54
  • ISSN: 0764-583X

How to cite

top

Di Marco, Silvia C., and González, Roberto L. V.. "Minimax optimal control problems. Numerical analysis of the finite horizon case." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 23-54. <http://eudml.org/doc/193913>.

@article{DiMarco1999,
author = {Di Marco, Silvia C., González, Roberto L. V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {minimax optimal control problems; numerical examples; error bounds; finite difference method},
language = {eng},
number = {1},
pages = {23-54},
publisher = {Dunod},
title = {Minimax optimal control problems. Numerical analysis of the finite horizon case},
url = {http://eudml.org/doc/193913},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Di Marco, Silvia C.
AU - González, Roberto L. V.
TI - Minimax optimal control problems. Numerical analysis of the finite horizon case
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 23
EP - 54
LA - eng
KW - minimax optimal control problems; numerical examples; error bounds; finite difference method
UR - http://eudml.org/doc/193913
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential inclusions. Springer-Verlag, New York (1984). Zbl0538.34007MR755330
  2. [2] G. Barles, Ch. Daher and M. Romano, Optimal control on the L∞ norm of a diffusion process. SIAM J. Contr. Opt. 32 (1994) 612-634. Zbl0825.93979MR1269985
  3. [3] G. Barles, Ch. Daher and M. Romano, Convergence of numerical schemes for parabolic equations arising in finace theory. Math. Models Met. Appl. Sci. 5 (1995) 125-143. Zbl0822.65056MR1315000
  4. [4] E.N. Barron, Differential games with maximum cost. Nonlinear Analysis, Theory, Methods and Applications 14 (1990) 971-989. Zbl0708.90104MR1058417
  5. [5] E.N. Barron, The Pontryagin maximum principle for minimax problems of optimal control. Nonlinear Analysis, Theory, Methods and Applications 15 (1990) 1155-1165. Zbl0752.49013MR1082290
  6. [6] E.N. Barron, Averaging in Lagrange and minimax problems of optimal control. SIAM J. Contr. Opt. 31 (1930) 1630-1652. Zbl0791.49033MR1242220
  7. [7] E.N. Barron, Optimal control and calculus of variations in L∞, in Optimal Control in Differential Equations. N.H. Pavel and Marcel Dekker Eds., New York (1994). Zbl0823.49002MR1289873
  8. [8] E.N. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost. Nonlinear Analysis, Theory, Methods and Applications 13 (1989) 1067-1090. Zbl0691.49030MR1013311
  9. [9] E.N. Barron and R. Jensen, Relaxed minimax control. SIAM J. Contr. Opt. 33 (1995) 1028-1039. Zbl0824.49008MR1339052
  10. [10] E.N. Barron, R. Jensen and J.L. Menaldi, Optimal control and differential games with measures. Nonlinear Analysis, Theory, Methods and Applications 21 (1993) 241-268. Zbl0799.90139MR1237586
  11. [11] I. Capuzzo Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim. 10 (1983) 367-377. Zbl0582.49019MR713483
  12. [12] I. Capuzzo Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation. Ann. Inst. Henry Poincaré. Anal. Non-lin. 6 (1989) 161-184. Zbl0674.49028MR1019113
  13. [13] I. Capuzzo Dolcetta and H. Ishii, Approximate solution of the Bellman equation of determmistic control theory. Appl. Math. Optim. 11 (1984) 161-181. MR743925
  14. [14] P.G. Ciarlet, Discrete maximum principle for finite-difference operators. Aequations Math. 4 (1970) 338-352. Zbl0198.14601MR292317
  15. [15] R. Dacorogna, Direct methods in the calculus of variations Springer-Verlag, Berlin (1987). Zbl0703.49001
  16. [16] S. C. Di Marco and R. L. V. Gonzalez, Une procedure numérique pour la minimisation du coût maximum. C. R. Acad. Sci. Pans, Série I 321 (1995) 869-874. Zbl0837.65066MR1355844
  17. [17] S. C. Di Marco and R. L. V. González, A minimax optimal control problem wih infinite horizon. Rapport de Recherche N°2945, INRIA, Rocquencourt (1996). 
  18. [18] A. Friedman, Differential games. Wiley-Interscience, New York (1971). Zbl0229.90060MR421700
  19. [19] R. L. V. González and E. Rofman, On deterministic control problems: An approximation procedure for the optimal cost, Parts 1 and 2, SIAM J. Contr. Opt. 23 (1985) 242-285. Zbl0563.49024MR777458
  20. [20] R.L.V. González and M.M. Tidball, On a discrete time approximation of the Hamilton-Jacobi equation of dynamic programming, Rapport de Recherche N°1375, INRIA, Rocquencourt (1990). 
  21. [21] R.L.V. González and M. M. Tidball, On the rate of convergence of fully discrete solutions of Hamilton-Jacobi equations, Rapport de Recherche N°1376, INRIA, Rocquencourt (1991). MR1154391
  22. [22] R.L.V. González and M. M. Tidball, Sur l'ordre de convergence des solutions discrétisées en temps et en espace de l'équation de Hamilton-Jacobi, C. R. Acad. Sci., Paris, Série I 314 (1992) 479-482. Zbl0747.65048MR1154391
  23. [23] G. Strang and G. Fix, An analysis of the finite element method Prentice-Hall, Englewood Cliffs, New Jersey (1973). Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.