Incompressibility in rod and shell theories

Stuart S. Antman; Friedemann Schuricht

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 289-304
  • ISSN: 0764-583X

How to cite

top

Antman, Stuart S., and Schuricht, Friedemann. "Incompressibility in rod and shell theories." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 289-304. <http://eudml.org/doc/193921>.

@article{Antman1999,
author = {Antman, Stuart S., Schuricht, Friedemann},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {planar deformation of rods; spatial deformation of rods; shells; thin incompressible bodies; constraints; exact theories},
language = {eng},
number = {2},
pages = {289-304},
publisher = {Dunod},
title = {Incompressibility in rod and shell theories},
url = {http://eudml.org/doc/193921},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Antman, Stuart S.
AU - Schuricht, Friedemann
TI - Incompressibility in rod and shell theories
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 289
EP - 304
LA - eng
KW - planar deformation of rods; spatial deformation of rods; shells; thin incompressible bodies; constraints; exact theories
UR - http://eudml.org/doc/193921
ER -

References

top
  1. [1] S.S. Antman, Nonlinear Problems of Elasticity. Springer-Verlag (1995). Zbl0820.73002MR1323857
  2. [2] S.S. Antman, Convergence properties of hiérarchies of dynamical theories of rods and shells. Z. Angew. Math. Phys. 48 (1997) 874-884. Zbl0896.73029MR1488685
  3. [3] S.S. Antman and R.S. Marlow, Material constraints, Lagrange multipliers, and compatibility. Applications to rod and shell theories. Arch. Rational Mech. Anal. 116 (1991) 257-299. Zbl0769.73012MR1132762
  4. [4] P.G. Ciarlet, Mathematical Elasticity, Volume II: Theory of Plates. North-Holland (1997). Zbl0953.74004MR1477663
  5. [5] P.G. Ciarlet, Mathematical Elastictty, Volume III: Theory of Shells. North-Holland (1999). MR1757535
  6. [6] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). Zbl0585.65077MR851383
  7. [7] P. Le Tallec, Numerical methods for solids in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions Eds. North-Holland (1994) 465-622. Zbl0875.73234MR1307410
  8. [8] R. Saxton, Existence of solutions for a finite nonlinearly hyperelastic rod. J. Math Anal Appl. 105 (1985) 59-75. Zbl0561.73046MR773572
  9. [9] C. Schwab and S. Wright, Boundary layers of hierarchical beam and plate models. J. Elasticity 38 (1995) 1-40. Zbl0834.73040MR1323554
  10. [10] L. Trabucho and J. M. Viano, Mathematical Modelling of Rods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions Eds. North-Holland 4 (1996) 487-974. Zbl0873.73041MR1422507
  11. [11] R. Temam, Navier-Stokes Equations. North-Holland (1977). Zbl0383.35057MR603444
  12. [12] T. Wright, Nonlinear waves in rods : results for incompressible elastic materials. Stud. Appl. Math. 72 (1984) 149-160. Zbl0558.73020MR782278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.