Boundary observability for the space semi-discretizations of the wave equation
Juan Antonio Infante; Enrique Zuazua
- Volume: 33, Issue: 2, page 407-438
- ISSN: 0764-583X
Access Full Article
topHow to cite
topInfante, Juan Antonio, and Zuazua, Enrique. "Boundary observability for the space semi-discretizations of the $1-d$ wave equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 407-438. <http://eudml.org/doc/193927>.
@article{Infante1999,
author = {Infante, Juan Antonio, Zuazua, Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave equation; semi-discretization; finite difference; finite element; boundary observability},
language = {eng},
number = {2},
pages = {407-438},
publisher = {Dunod},
title = {Boundary observability for the space semi-discretizations of the $1-d$ wave equation},
url = {http://eudml.org/doc/193927},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Infante, Juan Antonio
AU - Zuazua, Enrique
TI - Boundary observability for the space semi-discretizations of the $1-d$ wave equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 407
EP - 438
LA - eng
KW - wave equation; semi-discretization; finite difference; finite element; boundary observability
UR - http://eudml.org/doc/193927
ER -
References
top- [1] M. Avellaneda, C. Bardos and J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptotic Analysis 5 (1992) 481-494. Zbl0763.93006MR1169354
- [2] C. Castro and E. Zuazua, Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris 324 (1997) 1237-1242. Zbl1007.93036MR1456294
- [3] R. Glowinski, Ensuring Weli-Posedness by Analogy; Stokes Problem and Boundary Control for the Wave Equation. J. Comput.Phys. 103 (1992) 189-221. Zbl0763.76042MR1196839
- [4] R. Glowinski, C. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation. (I).Dirichlet Controls: Description of the numerical methods. Jap. J. Appl. Math. 7 (1990) 1-76. Zbl0699.65055MR1039237
- [5] R. Glowinski and J. L. Lions, Exact and approximate controllability for distributed parameter Systems. Acta Numerica (1996)159-333. Zbl0838.93014MR1352473
- [6] J. A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1 - d wave equation. C. R. Acad. Sci.Paris 326 (1998) 713-718. Zbl0910.65051MR1641762
- [7] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Mathematische Zeitschrift 41 (1936) 367-379. Zbl0014.21503MR1545625
- [8] E. Isaacson and H. B. Keller, Analysis of Numerical Methods. John Wiley & Sons (1966). Zbl0168.13101MR201039
- [9] V. Komornik, Exact controllability and stabilization. The multiplier method. John Wiley & Sons, Masson (1994). Zbl0937.93003MR1359765
- [10] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, The SIAM Series in Applied Mathematics. John Wiley & Sons (1967). Zbl0159.13201MR220537
- [11] J. L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Tome 1. Contrôlabilité exacte. Masson,RMA8 (1988). Zbl0653.93002
- [12] R. Vichnevetsky and J. B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations. SIAM, Philadelphia(1982). Zbl0495.65041MR675265
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.