Boundary observability for the space semi-discretizations of the 1 - d wave equation

Juan Antonio Infante; Enrique Zuazua

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 407-438
  • ISSN: 0764-583X

How to cite

top

Infante, Juan Antonio, and Zuazua, Enrique. "Boundary observability for the space semi-discretizations of the $1-d$ wave equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 407-438. <http://eudml.org/doc/193927>.

@article{Infante1999,
author = {Infante, Juan Antonio, Zuazua, Enrique},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {wave equation; semi-discretization; finite difference; finite element; boundary observability},
language = {eng},
number = {2},
pages = {407-438},
publisher = {Dunod},
title = {Boundary observability for the space semi-discretizations of the $1-d$ wave equation},
url = {http://eudml.org/doc/193927},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Infante, Juan Antonio
AU - Zuazua, Enrique
TI - Boundary observability for the space semi-discretizations of the $1-d$ wave equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 407
EP - 438
LA - eng
KW - wave equation; semi-discretization; finite difference; finite element; boundary observability
UR - http://eudml.org/doc/193927
ER -

References

top
  1. [1] M. Avellaneda, C. Bardos and J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptotic Analysis 5 (1992) 481-494. Zbl0763.93006MR1169354
  2. [2] C. Castro and E. Zuazua, Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris 324 (1997) 1237-1242. Zbl1007.93036MR1456294
  3. [3] R. Glowinski, Ensuring Weli-Posedness by Analogy; Stokes Problem and Boundary Control for the Wave Equation. J. Comput.Phys. 103 (1992) 189-221. Zbl0763.76042MR1196839
  4. [4] R. Glowinski, C. H. Li and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation. (I).Dirichlet Controls: Description of the numerical methods. Jap. J. Appl. Math. 7 (1990) 1-76. Zbl0699.65055MR1039237
  5. [5] R. Glowinski and J. L. Lions, Exact and approximate controllability for distributed parameter Systems. Acta Numerica (1996)159-333. Zbl0838.93014MR1352473
  6. [6] J. A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1 - d wave equation. C. R. Acad. Sci.Paris 326 (1998) 713-718. Zbl0910.65051MR1641762
  7. [7] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Mathematische Zeitschrift 41 (1936) 367-379. Zbl0014.21503MR1545625
  8. [8] E. Isaacson and H. B. Keller, Analysis of Numerical Methods. John Wiley & Sons (1966). Zbl0168.13101MR201039
  9. [9] V. Komornik, Exact controllability and stabilization. The multiplier method. John Wiley & Sons, Masson (1994). Zbl0937.93003MR1359765
  10. [10] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, The SIAM Series in Applied Mathematics. John Wiley & Sons (1967). Zbl0159.13201MR220537
  11. [11] J. L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Tome 1. Contrôlabilité exacte. Masson,RMA8 (1988). Zbl0653.93002
  12. [12] R. Vichnevetsky and J. B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations. SIAM, Philadelphia(1982). Zbl0495.65041MR675265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.