Divergence boundary conditions for vector Helmholtz equations with divergence constraints

Urve Kangro; Roy Nicolaides

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 479-492
  • ISSN: 0764-583X

How to cite

top

Kangro, Urve, and Nicolaides, Roy. "Divergence boundary conditions for vector Helmholtz equations with divergence constraints." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 479-492. <http://eudml.org/doc/193931>.

@article{Kangro1999,
author = {Kangro, Urve, Nicolaides, Roy},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {interior and boundary formulations of divergence constraints; finite elements; vector Helmholtz case of electromagnetics},
language = {eng},
number = {3},
pages = {479-492},
publisher = {Dunod},
title = {Divergence boundary conditions for vector Helmholtz equations with divergence constraints},
url = {http://eudml.org/doc/193931},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Kangro, Urve
AU - Nicolaides, Roy
TI - Divergence boundary conditions for vector Helmholtz equations with divergence constraints
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 479
EP - 492
LA - eng
KW - interior and boundary formulations of divergence constraints; finite elements; vector Helmholtz case of electromagnetics
UR - http://eudml.org/doc/193931
ER -

References

top
  1. [1] M. Costabel, A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains. Math. Methods Appl. Sci. 12 (1990) 365-368. Zbl0699.35028MR1048563
  2. [2] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). Zbl0585.65077MR851383
  3. [3] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program (1985). Zbl0695.35060MR775683
  4. [4] C. Hazard and M. Lenoir, On the Solution of Time-harmonic Scattering Problems for Maxwell's Equations. SIAM J. Math. Anal 27 (1996) 1597-1630. Zbl0860.35129MR1416510
  5. [5] B.N. Jiang, J. Wu and L.A. Povinelli, The Origin of Spurious Solutions in Computational Electromagnetics. J. Comput. Phys. 125 (1995) 104-123. Zbl0848.65086MR1381806
  6. [6] M. Křížek and P. Neittaanmäki, On the Validity of Friedrichs' Inequalities. Math. Scand. 54 (1984), 17-26. Zbl0555.35003MR753060
  7. [7] I.D. Mayergoyz, A New Point of View on the Mathematical Structure of Maxwell's Equations. IEEE Trans. Magn. 29 (1993) 1315-1320. 
  8. [8] F. Murat, Compacité par Compensation. Ann. Scuola Norm. Sup.Pisa Cl. Sci. 5 (1978) 485-507. Zbl0399.46022MR506997

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.