and error estimates for mixed methods for integro-differential equations of parabolic type
- Volume: 33, Issue: 3, page 531-546
- ISSN: 0764-583X
Access Full Article
topHow to cite
topJiang, Ziwen. "$L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 531-546. <http://eudml.org/doc/193934>.
@article{Jiang1999,
author = {Jiang, Ziwen},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element method; initial-boundary value problems; parabolic integro-differential equation; error estimates},
language = {eng},
number = {3},
pages = {531-546},
publisher = {Dunod},
title = {$L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type},
url = {http://eudml.org/doc/193934},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Jiang, Ziwen
TI - $L^\infty (L^2)$ and $L^\infty (L^\infty )$ error estimates for mixed methods for integro-differential equations of parabolic type
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 531
EP - 546
LA - eng
KW - mixed finite element method; initial-boundary value problems; parabolic integro-differential equation; error estimates
UR - http://eudml.org/doc/193934
ER -
References
top- [1] J. R. Cannon and Y. Lin, A priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27 (1990) 595-607. Zbl0709.65122MR1041253
- [2] J. R. Cannon and Y. Lin, Non-classical H1 projection and Galerkin methods for nonlinear parabohc Integro-differential equations. Calcolo 25 (1988) 187-201. Zbl0685.65124MR1053754
- [3] L. C. Cowsar, T. F. Dupont and M. F. Wheeler, A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg. 82 (1990) 205-222. Zbl0724.65087MR1077657
- [4] L. C. Cowsar, T. F. Dupont and M. F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33 (1996) 492-504. Zbl0859.65097MR1388485
- [5] J. Jr. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. Zbl0624.65109MR771029
- [6] E. Greenwell-Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12 (1988) 785-809. Zbl0657.65142MR954953
- [7] M. N. Le Roux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989) 1291-1309. Zbl0701.65091MR1025089
- [8] Y. Lin, Galerkin methods for nonlinear parabolic integro-differential equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 27 (1990) 608-621. Zbl0703.65095MR1041254
- [9] F. A. Milner, Mixed finite element methods for Quasilinear second-order elliptic problems. Math. Comp. 44 (1985) 303-320. Zbl0567.65079MR777266
- [10] F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem. Math. Comp. 64 (1995) 973-988. Zbl0829.65128MR1303087
- [11] E. J. Park, Mixed finite element method for nonlinear second-order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865-885. Zbl0834.65108MR1335659
- [12] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lect. Notes Math. 606 (1977) 292-315. Zbl0362.65089MR483555
- [13] R. Scholtz, Optimal L∞-estimates for a mixed finite element method for second order elliptic and parabolic problems. Calcolo 20 (1983) 355-377. Zbl0571.65092MR761790
- [14] J. Squeff, Superconvergence of mixed finite element methods for parabohc equations. RAIRO Modél. Math. Anal. Numér. 21 (1987) 327-352. Zbl0621.65116MR896246
- [15] V. Thomée and N. Y. Zhang, Error estimates for semi-discrete finite element methods for parabohc integro-differential equations. Math. Comp. 53 (1989) 121-139. Zbl0673.65099MR969493
- [16] J. Wang, Asymptotic expansions and L∞-error estimates for mixed finite element methods for second order elliptic problems. Numer. Math. 55 (1989) 401-430. Zbl0676.65109MR997230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.