Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal

Eric Bonnetier; Richard S. Falk; Michael A. Grinfeld

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 573-591
  • ISSN: 0764-583X

How to cite

top

Bonnetier, Eric, Falk, Richard S., and Grinfeld, Michael A.. "Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 573-591. <http://eudml.org/doc/193936>.

@article{Bonnetier1999,
author = {Bonnetier, Eric, Falk, Richard S., Grinfeld, Michael A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {minimization of nonconvex nonlocal functional; equilibrium configurations; one-dimensinal variational model; bulk energy; deformable crystal; surface energy; stable absolute minimum; minimizing sequence},
language = {eng},
number = {3},
pages = {573-591},
publisher = {Dunod},
title = {Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal},
url = {http://eudml.org/doc/193936},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Bonnetier, Eric
AU - Falk, Richard S.
AU - Grinfeld, Michael A.
TI - Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 573
EP - 591
LA - eng
KW - minimization of nonconvex nonlocal functional; equilibrium configurations; one-dimensinal variational model; bulk energy; deformable crystal; surface energy; stable absolute minimum; minimizing sequence
UR - http://eudml.org/doc/193936
ER -

References

top
  1. [1] J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler Lagrange equation.Arch. Rational Mech. Anal 90 (1985) 325-388. Zbl0585.49002MR801585
  2. [2] C. Bandle, Isoperimetric Inequalities and Applications. Pitman (1980). Zbl0436.35063MR572958
  3. [3] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, New York (1989). Zbl0703.49001MR990890
  4. [4] Solids Far From Equilibrium. C. Godresche Ed., Cambridge University Press (1991). 
  5. [5] J. W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Sci. 3 (1876-1878) 108-248, 343-524. JFM08.0559.03
  6. [6] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser, Boston (1984). Zbl0545.49018MR775682
  7. [7] M. A. Grinfeld, Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman (1991). Zbl0752.73001MR1243876
  8. [8] M. A. Grinfeld, Stress driven instabilities in crystals: mathematical models and physical manifestations. J. Nonlinear Sci. 3 (1993) 35-83. Zbl0843.73040MR1216987
  9. [9] M. A. Grinfeld, Manifestations of the stress driven rearrangement instabilities in creep, damaging and fracture. Final Report.Wright-Patterson Laboratory (1995). 
  10. [10] MSR Bulletin (1996). 
  11. [11] L. D. Landau and E. M. Lifshitz, Statistical physics, Part 1. Oxford, Pergamon Press (1986). Zbl0080.19702MR884707JFM64.0887.01
  12. [12] P. Nozières, Lectures at Collège de France (1988) unpublished notes. Growth and Shape of Crystals (lectures given at Beg-Rohu Summer School, Brittany, 1989) in Solids Far From Equilibrium, C. Godreche Ed., Cambridge University Press (1991). 
  13. [13] P. Nozières, Amplitude Expansion for the Grinfeld Instability due to Uniaxial Stress at a Solid Surface. J. Phys. 3 (1993) 681. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.