On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients

Pulin K. Bhattacharyya; Neela Nataraj

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 4, page 807-836
  • ISSN: 0764-583X

How to cite

top

Bhattacharyya, Pulin K., and Nataraj, Neela. "On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 807-836. <http://eudml.org/doc/193948>.

@article{Bhattacharyya1999,
author = {Bhattacharyya, Pulin K., Nataraj, Neela},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element methods; fourth-order elliptic problems; error bounds},
language = {eng},
number = {4},
pages = {807-836},
publisher = {Dunod},
title = {On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients},
url = {http://eudml.org/doc/193948},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Bhattacharyya, Pulin K.
AU - Nataraj, Neela
TI - On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 807
EP - 836
LA - eng
KW - mixed finite element methods; fourth-order elliptic problems; error bounds
UR - http://eudml.org/doc/193948
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, NewYork (1975). Zbl0314.46030MR450957
  2. [2] I. Babuska, Error Bounds for Finite Element Method. Numer. Math. 16 (1971) 322-333. Zbl0214.42001MR288971
  3. [3] I. Babuska and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis, Vol. 2, Part 1, J.L. Lions and P.G. Ciarlet Eds., North-Holland, Amsterdam (1991) 641-787. Zbl0875.65087MR1115240
  4. [4] S. Balasundaram and P.K. Bhattacharyya, On Existence of Solution of the Dirichlet Problem of Fourth Order Partial Differential Equations with Variable Coefficients. Quart. Appl. Math. 39 (1983) 311-317. Zbl0533.35024MR721421
  5. [5] S. Balasundaram and P.K. Bhattacharyya, A Mixed Finite Element Method for Fourth Order Elliptic Equations with Variable Coefficients. Comput. Math. Appl 10 (1984) 245-256. Zbl0553.65080MR757239
  6. [6] S. Balasundaram and P.K. Bhattacharyya, A Mixed Finite Element Method for Fourth Order Elliptic Operators with Variable Coefficients, 4th Int. Symp. on Finite Element Methods in Flow Problems, Chuo University, Tokyo (1982), in Finite Element Analysis of Flow Problems, T. Kawai Ed., Tokyo University Press (1982) 995-1001. Zbl0508.76006
  7. [7] S. Balasundaram and P.K. Bhattacharyya, Mixed Finite Element Method for Fourth Order Partial Differential Equations. ZAMM 66 (1986) 489-499. Zbl0616.73064MR870849
  8. [8] M. Bernadou, Méthodes d'éléments finis pour les problèmes de coques minces. Collection Recherches en Mathématiques Appliquées, Masson, Paris (1994). 
  9. [9] P.K. Bhattacharyya and N. Nataraj, Error Estimates for Isoparametric Mixed Finite Element Solution of 4th Order Elliptic Problems with Variable Coefficients (submitted). Zbl1006.65123
  10. [10] P.K. Bhattacharyya, Mixed Finite Element Method for Fourth Order Elliptic Operators with Variable Coefficients, In Proc. of 6th Joint France-Italy- USSR Symp. on Numerical Solution of Nonlinear Problems, INRIA, France (1983) 127-144; Russian Translation, in Methods of Computational Mathematics and Mathematical Modelling, Computational Mathematics Section, Academy of Sciences, Moscow, USSR (1985) 76-99. Zbl0671.73055MR802809
  11. [11] P.K. Bhattacharyya, S. Gopalsamy and S. Balasundaram, On a Mixed Finite Element Method for Clamped Anisotropic Plate Bending Problems. Internat. J. Numer. Methods Engrg. 28 (1989) 1351-1370. Zbl0705.73227
  12. [12] P.K. Bhattacharyya and S. Balasundaram, A Mixed Finite Element Method for Fourth Order Elliptic Problems with Variable Coefficients. J. Comput. Appl. Math. 22 (1988) 1-24. Zbl0647.65075MR948883
  13. [13] F. Brezzi, On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers. RAIRO Anal. Numér. 8 (1974) 129-151. Zbl0338.90047MR365287
  14. [14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). Zbl0788.73002MR1115205
  15. [15] F. Brezzi and P.A. Raviart, Mixed Finite Element Methods for 4th Order Elliptic Equations, in Topics in Nufnerical Analysis III, J. Miller Ed., Academic Press, New York (1978) 33-56. Zbl0434.65085MR657975
  16. [16] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. 2, Part 1, J.L. Lions and P.G. Ciarlet Eds., North-Holland, Amsterdam (1991). Zbl0875.65086MR1115237
  17. [17] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  18. [18] P.G. Ciarlet and P.A. Raviart, A Mixed Finite Element Method for the Biharmonic Equation, in Symp. on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974) 125-145. Zbl0337.65058MR657977
  19. [19] P.G. Ciarlet and P.A Raviart, The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1972) 409-474. Zbl0262.65070MR421108
  20. [20] S. Gopalsamy and P.K. Bhattacharyya, On Existence and Uniqueness of Solution of Boundary Value Problems of Fourth Order Elliptic Partial Differential Equations with Variable Coefficients. J. Math. Anal. Appl. 136 (1988) 589-608. Zbl0673.35022MR972159
  21. [21] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
  22. [22] K. Hellan, Analysis of Elastic Plates in Flexure by a Simplified Finite Element Method. Acta Polytech. Scand., Civil Engineering Series, Trondheim, 46 (1967). Zbl0237.73046
  23. [23] L. Herrmann, Finite Element Bending Analysis for Plates. J. Eng. Mech. Div. ASCE 93, EM 5 (1967) 49-83. 
  24. [24] V.A. Kondratev, Boundary Value Problems for Elliptic Equations in Domains with Conical or Angular Points. Trudy Moskov. Mat. Obshch. 16 (1967) 7209-292. Zbl0194.13405MR226187
  25. [25] S.G. Leknitskii, Anisotropic Plates. Gordon and Breach Science Publishers, New York (1968). 
  26. [26] J.L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles. Les Presses de l'Université de Montréal, Montréal (1965). Zbl0143.14003MR251372
  27. [27] L. Mansfield, Approximation of the Boundary in the Finite Element solution of fourth order problems. SIAM J. Numer. Anal. 15 (1978) 568-579. Zbl0391.65047MR471373
  28. [28] T. Miyoshi, A finite element method for the solution of fourth order partial differential equations. Kumamoto J. Sci. (Math.) 9 (1973) 87-116. Zbl0249.35007MR386298
  29. [29] N. Nataraj, P.K. Bhattacharyya, S. Balasundaram and S. Gopalsamy, On a Mixed-Hybrid Finite Element Method for Anisotropic Plate Bending Problems. Internat. J. Numer. Methods Engrg. 39 (1996) 4063-4089. Zbl0882.73069MR1420777
  30. [30] J.T. Oden and G.F Carey, Finite Elements-Mathematical Aspects IV, The Texas Finite Element Series. Prentice Hall, Eaglewood Cliffs, New Jersey (1983). Zbl0496.65055MR767806
  31. [31] A.B. Ouaritini, Méthodes d'éléments finis mixtes pour des problèmes de coques minces. Ph.D. thesis, University of Pau et Pays de L'Adour, France (1984). 
  32. [32] P.A. Raviart and J.M. Thomas, Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles. Mason, Paris (1983). Zbl0561.65069
  33. [33] J.E Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis, Vol. 2, Part 1, J.L Lions and P.G. Ciarlet Eds., North-Holland, Amsterdam (1991) 523-633. Zbl0875.65090MR1115239
  34. [34] R. Scholtz, A Mixed Method for 4th order Problems Using Linear Finite Elements. RAIRO Anal Numér. 12 (1978) 85-90. Zbl0382.65059MR483557
  35. [35] R. Scott, Finite Element Techniques for Curved Boundaries. Ph.D. thesis, M.I.T. (1973). 
  36. [36] G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, New York (1973). Zbl0356.65096MR443377
  37. [37] S. Timoshenko and S. Woinowsky-Kreiger, Theory of Plates and Shells. McGraw-Hill Book Company, New York (1959). JFM66.1049.02
  38. [38] A. Zeníšek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, New York (1990). Zbl0731.65090MR1086876
  39. [39] M. Zlamal, Curved elements in the finite element method, I. SIAM J. Numer. Anal. 10 (1973) 229-240. Zbl0285.65067MR395263
  40. [40] M. Zlamal, Curved elements in the finite element method, II. SIAM J. Numer. Anal. 11 (1974) 347-362. Zbl0277.65064MR343660

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.