Approximation of parabolic equations using the Wasserstein metric
David Kinderlehrer; Noel J. Walkington
- Volume: 33, Issue: 4, page 837-852
- ISSN: 0764-583X
Access Full Article
topHow to cite
topKinderlehrer, David, and Walkington, Noel J.. "Approximation of parabolic equations using the Wasserstein metric." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 837-852. <http://eudml.org/doc/193949>.
@article{Kinderlehrer1999,
author = {Kinderlehrer, David, Walkington, Noel J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {variational method; Wasserstein metric; parabolic initial-boundary value problems; time discretization; convection-diffusion equations; Fokker-Planck equation; heat equation; Stefan problem},
language = {eng},
number = {4},
pages = {837-852},
publisher = {Dunod},
title = {Approximation of parabolic equations using the Wasserstein metric},
url = {http://eudml.org/doc/193949},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Kinderlehrer, David
AU - Walkington, Noel J.
TI - Approximation of parabolic equations using the Wasserstein metric
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 837
EP - 852
LA - eng
KW - variational method; Wasserstein metric; parabolic initial-boundary value problems; time discretization; convection-diffusion equations; Fokker-Planck equation; heat equation; Stefan problem
UR - http://eudml.org/doc/193949
ER -
References
top- [1] J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Preprint (1998). Zbl0968.76069
- [2] J. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem. SIAM J. AppL Math. 58 (1998) 1450-1461. Zbl0915.35024MR1627555
- [3] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991)375-417. Zbl0738.46011MR1100809
- [4] P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1988). Zbl0672.65001MR1015713
- [5] W.E. and F. Otto, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1998) 10177-10184. Zbl1110.76307
- [6] M. Frechet, Sur la distance de deux lois de probabilité. C.R. Acad. Sci. 244 (1957) 689-692. Zbl0077.33007MR83210
- [7] W. Gangbo and A. Sweich, Optimal maps for the multidimensional Monge-Kantorovich problem. CPAM 51 (1998) 23-45. Zbl0889.49030MR1486630
- [8] W. Gango and R.J. McCann, The geometry of optimal transportation. Acta Math, 177 (1996) 113-161. Zbl0887.49017MR1440931
- [9] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck équation. SIAM J. Math. Anal. 29 (1998) 1-17. Zbl0915.35120MR1617171
- [10] R. Jordan, D. Kinderlehrer and F. Otto, Dynamics of the Fokker-Planck equation. Phase Transitions (to appear). Zbl0915.35120
- [11] E.H. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics. AMS (1997). Zbl0873.26002MR1415616
- [12] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids. Arch. Rational Mech. Anal. 141 (1998) 63-103. Zbl0905.35068MR1613500
- [13] N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland (1981). Zbl0511.60038MR648937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.