Page 1 Next

Displaying 1 – 20 of 131

Showing per page

A class of time discrete schemes for a phase–field system of Penrose–Fife type

Olaf Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a phase field system of Penrose–Fife type with non–conserved order parameter is considered. A class of time–discrete schemes for an initial–boundary value problem for this phase–field system is presented. In three space dimensions, convergence is proved and an error estimate linear with respect to the time–step size is derived.

A diffused interface whose chemical potential lies in a Sobolev space

Yoshihiro Tonegawa (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms W 1 , p of the associated chemical potential fields are bounded uniformly, where p > n 2 and n is the dimension of the domain. We show that the limit interface as ε tends to zero is an integral varifold with a sharp integrability condition on the mean curvature.

A domain splitting method for heat conduction problems in composite materials

Friedrich Karl Hebeker (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a domain decomposition method for some unsteady heat conduction problem in composite structures. This linear model problem is obtained by homogenization of thin layers of fibres embedded into some standard material. For ease of presentation we consider the case of two space dimensions only. The set of finite element equations obtained by the backward Euler scheme is parallelized in a problem-oriented fashion by some noniterative overlapping domain splitting method, eventually enhanced...

A parallel algorithm for two phase multicomponent contaminant transport

Todd Arbogast, Clint N. Dawson, Mary F. Wheeler (1995)

Applications of Mathematics

We discuss the formulation of a simulator in three spatial dimensions for a multicomponent, two phase (air, water) system of groundwater flow and transport with biodegradation kinetics and wells with multiple screens. The simulator has been developed for parallel, distributed memory, message passing machines. The numerical procedures employed are a fully implicit expanded mixed finite element method for flow and either a characteristics-mixed method or a Godunov method for transport and reactions...

A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems

Hideki Murakawa (2009)

Kybernetika

This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems. The reaction-diffusion...

An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy

John W. Barrett, James F. Blowey (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the approach in [5] for analysing time discretization error and assuming more regularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise linear finite element approximation with a backward Euler time discretization of a model for phase separation of a multi-component alloy with non-smooth free energy.

Currently displaying 1 – 20 of 131

Page 1 Next