Existence of a solution for a nonlinearly elastic plane membrane “under tension”

Daniel Coutand

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 1019-1032
  • ISSN: 0764-583X

How to cite

top

Coutand, Daniel. "Existence of a solution for a nonlinearly elastic plane membrane “under tension”." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 1019-1032. <http://eudml.org/doc/193952>.

@article{Coutand1999,
author = {Coutand, Daniel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {coercive non-lower semi-continuous energy functional; existence; nonlinear membrane-plate equations},
language = {eng},
number = {5},
pages = {1019-1032},
publisher = {Dunod},
title = {Existence of a solution for a nonlinearly elastic plane membrane “under tension”},
url = {http://eudml.org/doc/193952},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Coutand, Daniel
TI - Existence of a solution for a nonlinearly elastic plane membrane “under tension”
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 1019
EP - 1032
LA - eng
KW - coercive non-lower semi-continuous energy functional; existence; nonlinear membrane-plate equations
UR - http://eudml.org/doc/193952
ER -

References

top
  1. [1] S. Agmon A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964) 35-92. Zbl0123.28706MR162050
  2. [2] P.G. Ciarlet, Mathematical Elasticity, I, Three-Dimensional Elasticity. North Holland, Amsterdam (1988). Zbl0953.74004MR936420
  3. [3] P.G. Ciarlet, Mathematical Elasticity, II, Theory of Plates. North Holland, Amsterdam (1997). Zbl0953.74004MR1477663
  4. [4] P.G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258. Zbl0405.73050MR533827
  5. [5] D. Coutand, Existence d'un minimiseur pour le modèle "proprement invariant" de plaque "en flexion" non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 245-248. Zbl0873.73078MR1438393
  6. [6] D. Coutand, Théorèmes d'existence pour un modèle "proprement invariant" de plaque membranaire non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 1181-1184. Zbl0882.73035MR1451944
  7. [7] D. Coutand, Existence of a solution for a nonlinearly elastic plane membrane subject to plane forces. J. Elasticity 53 (1999) 147-159. Zbl1083.74530MR1705408
  8. [8] J. Diestel and J.J.Jr. Uhl, Vector Measures. Math. Surveys, AMS 15 (1977). Zbl0369.46039MR453964
  9. [9] D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal 124 (1993) 157-199. Zbl0789.73039MR1237909
  10. [10] G. Geymonat, Sui problemi ai limiti per i sistemi lineari ellitici. Ann. Mat Pura Appl. 69 (1965) 207-284 Zbl0152.11102MR196262
  11. [11] A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press (1968). Zbl0155.51801MR245245
  12. [12] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. Zbl0847.73025MR1365259
  13. [13] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967). MR227584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.