Homogenization of a monotone problem in a domain with oscillating boundary
Dominique Blanchard; Luciano Carbone; Antonio Gaudiello
- Volume: 33, Issue: 5, page 1057-1070
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBlanchard, Dominique, Carbone, Luciano, and Gaudiello, Antonio. "Homogenization of a monotone problem in a domain with oscillating boundary." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 1057-1070. <http://eudml.org/doc/193954>.
@article{Blanchard1999,
author = {Blanchard, Dominique, Carbone, Luciano, Gaudiello, Antonio},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; oscillating boundary; nonlinear elliptic equation; Neumann boundary condition; asymptotic behaviour},
language = {eng},
number = {5},
pages = {1057-1070},
publisher = {Dunod},
title = {Homogenization of a monotone problem in a domain with oscillating boundary},
url = {http://eudml.org/doc/193954},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Blanchard, Dominique
AU - Carbone, Luciano
AU - Gaudiello, Antonio
TI - Homogenization of a monotone problem in a domain with oscillating boundary
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 1057
EP - 1070
LA - eng
KW - homogenization; oscillating boundary; nonlinear elliptic equation; Neumann boundary condition; asymptotic behaviour
UR - http://eudml.org/doc/193954
ER -
References
top- [1] E. Acerbi and D. Percivale, Homogenization of Noncoercive Punctionals: Periodic Materials with Soft Inclusions. Appl. Math. Optim. 17 (1988) 91-102. Zbl0659.49010MR910944
- [2] H. Attouch, Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman, London (1984). Zbl0561.49012MR773850
- [3] N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, in Mathematics and Its Applications, Vol. 36, Kluwer Academie Publishers (1989). Zbl0692.73012MR1112788
- [4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). Zbl0404.35001MR503330
- [5] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. Doctoral Dissertation, University of Nice (1978).
- [6] R. Brizzi and J.P. Chalot, Boundary Homogenization and Neumann Boundary Value Problem. Ric. Mat. 46 (1997) 341-387. Zbl0959.35014MR1760382
- [7] G. Buttazzo and R.V. Kohn, Reinforcement by a Thin Layer with Oscillating Thickness. Appl. Math. Optim. 16 (1987) 247-261. MR901816
- [8] A. Corbo Esposito, P. Donato A. Gaudiello and C. Picard, Homogenization of the p-Laplacian in a Domain with Oscillating Boundary, Comm. Appl. Nonlinear Anal, 4 (1997) 1-23. Zbl0892.35017MR1485630
- [9] V. Chiadò Piat, Convergence of Minima for non Equicoercive Functionals and Related Problems. Ann. Mat. Pura Appl. 157 (1990) 251-283. Zbl0743.35020MR1108479
- [10] V. Chiadò Piat, G. Dal Masso and A. Defranceschi, G-Convergence of Monotone Operators. Ann. Inst. H. Poincaré 7 (1990) 123-160. Zbl0731.35033MR1065871
- [11] G. Dal Masso, An Introduction to Γ-Convergence. Birkhäuser Boston (1993). Zbl0816.49001MR1201152
- [12] E. De Giorgio and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.
- [13] A. Dervieux and B. Palmerio, Identification de domaines et problèmes de frontières libres. Thèse de 3e Cycle, University of Nice, France (1974).
- [14] P. Donato and G. Moscariello, On the Homogenization of Some Nonlinear Problems in Perforated Domains. Rend. Sem. Mat. Univ. Padova 84 (1990) 91-108. Zbl0755.35040MR1101285
- [15] N. Fusco and G. Moscariello, On the Homogenization of Quasilinear Divergence Structure Operators. Ann. Mat. Pura Appl. 146 (1987) 1-13. Zbl0636.35027MR916685
- [16] A. Gaudiello, Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary. Ric. Mat. 43 (1994) 239-292. Zbl0938.35511MR1324751
- [17] J.L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [18] J.L. Lions, Some Aspects of Optimal Control of Distributed Parameter Systems. SIAM Monograph 6 (1972). Zbl0275.49001MR479526
- [19] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre. C.R. Acad. Sci. Paris Sér. I 319 (1994) 567-572. Zbl0808.35037MR1298284
- [20] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes. C.R. Acad. Sci. Paris Sér. 1320 (1995) 1199-1204. Zbl0833.35140MR1336255
- [21] F. Murat and J. Simon, Quelques résultats sur le contrôle par un domaine géométrique. Report 74003, Lab. Num. Analysis, University of Paris VI, France (1974).
- [22] O. Pironneau, Sur les problèmes d'optimisation de structure en mécanique des fluides. Thèse d'État, University of Paris VI, France (1976).
- [23] O. Pironneau and C. Saguez, Asymptotic Behavior, with respect to the Domain, of Solutions of Partial Differential Equations. IRIA-LABORIA, Report 212 (1977).
- [24] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lect. Notes Phys. 127, Springer, Berlin (1980). Zbl0432.70002MR578345
- [25] L. Tartar, Cours Peccot, Coliège de France (1977). Partially written in F. Murat, H-Convergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn Ed., Progress in Nonlinear Differential Equations and their Applications, Birkhäuser-Verlag (1997) 21-44. Zbl0920.35019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.