Homogenization of a monotone problem in a domain with oscillating boundary

Dominique Blanchard; Luciano Carbone; Antonio Gaudiello

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 1057-1070
  • ISSN: 0764-583X

How to cite

top

Blanchard, Dominique, Carbone, Luciano, and Gaudiello, Antonio. "Homogenization of a monotone problem in a domain with oscillating boundary." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 1057-1070. <http://eudml.org/doc/193954>.

@article{Blanchard1999,
author = {Blanchard, Dominique, Carbone, Luciano, Gaudiello, Antonio},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; oscillating boundary; nonlinear elliptic equation; Neumann boundary condition; asymptotic behaviour},
language = {eng},
number = {5},
pages = {1057-1070},
publisher = {Dunod},
title = {Homogenization of a monotone problem in a domain with oscillating boundary},
url = {http://eudml.org/doc/193954},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Blanchard, Dominique
AU - Carbone, Luciano
AU - Gaudiello, Antonio
TI - Homogenization of a monotone problem in a domain with oscillating boundary
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 1057
EP - 1070
LA - eng
KW - homogenization; oscillating boundary; nonlinear elliptic equation; Neumann boundary condition; asymptotic behaviour
UR - http://eudml.org/doc/193954
ER -

References

top
  1. [1] E. Acerbi and D. Percivale, Homogenization of Noncoercive Punctionals: Periodic Materials with Soft Inclusions. Appl. Math. Optim. 17 (1988) 91-102. Zbl0659.49010MR910944
  2. [2] H. Attouch, Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman, London (1984). Zbl0561.49012MR773850
  3. [3] N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, in Mathematics and Its Applications, Vol. 36, Kluwer Academie Publishers (1989). Zbl0692.73012MR1112788
  4. [4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). Zbl0404.35001MR503330
  5. [5] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. Doctoral Dissertation, University of Nice (1978). 
  6. [6] R. Brizzi and J.P. Chalot, Boundary Homogenization and Neumann Boundary Value Problem. Ric. Mat. 46 (1997) 341-387. Zbl0959.35014MR1760382
  7. [7] G. Buttazzo and R.V. Kohn, Reinforcement by a Thin Layer with Oscillating Thickness. Appl. Math. Optim. 16 (1987) 247-261. MR901816
  8. [8] A. Corbo Esposito, P. Donato A. Gaudiello and C. Picard, Homogenization of the p-Laplacian in a Domain with Oscillating Boundary, Comm. Appl. Nonlinear Anal, 4 (1997) 1-23. Zbl0892.35017MR1485630
  9. [9] V. Chiadò Piat, Convergence of Minima for non Equicoercive Functionals and Related Problems. Ann. Mat. Pura Appl. 157 (1990) 251-283. Zbl0743.35020MR1108479
  10. [10] V. Chiadò Piat, G. Dal Masso and A. Defranceschi, G-Convergence of Monotone Operators. Ann. Inst. H. Poincaré 7 (1990) 123-160. Zbl0731.35033MR1065871
  11. [11] G. Dal Masso, An Introduction to Γ-Convergence. Birkhäuser Boston (1993). Zbl0816.49001MR1201152
  12. [12] E. De Giorgio and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101. 
  13. [13] A. Dervieux and B. Palmerio, Identification de domaines et problèmes de frontières libres. Thèse de 3e Cycle, University of Nice, France (1974). 
  14. [14] P. Donato and G. Moscariello, On the Homogenization of Some Nonlinear Problems in Perforated Domains. Rend. Sem. Mat. Univ. Padova 84 (1990) 91-108. Zbl0755.35040MR1101285
  15. [15] N. Fusco and G. Moscariello, On the Homogenization of Quasilinear Divergence Structure Operators. Ann. Mat. Pura Appl. 146 (1987) 1-13. Zbl0636.35027MR916685
  16. [16] A. Gaudiello, Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary. Ric. Mat. 43 (1994) 239-292. Zbl0938.35511MR1324751
  17. [17] J.L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  18. [18] J.L. Lions, Some Aspects of Optimal Control of Distributed Parameter Systems. SIAM Monograph 6 (1972). Zbl0275.49001MR479526
  19. [19] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre. C.R. Acad. Sci. Paris Sér. I 319 (1994) 567-572. Zbl0808.35037MR1298284
  20. [20] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes. C.R. Acad. Sci. Paris Sér. 1320 (1995) 1199-1204. Zbl0833.35140MR1336255
  21. [21] F. Murat and J. Simon, Quelques résultats sur le contrôle par un domaine géométrique. Report 74003, Lab. Num. Analysis, University of Paris VI, France (1974). 
  22. [22] O. Pironneau, Sur les problèmes d'optimisation de structure en mécanique des fluides. Thèse d'État, University of Paris VI, France (1976). 
  23. [23] O. Pironneau and C. Saguez, Asymptotic Behavior, with respect to the Domain, of Solutions of Partial Differential Equations. IRIA-LABORIA, Report 212 (1977). 
  24. [24] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lect. Notes Phys. 127, Springer, Berlin (1980). Zbl0432.70002MR578345
  25. [25] L. Tartar, Cours Peccot, Coliège de France (1977). Partially written in F. Murat, H-Convergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn Ed., Progress in Nonlinear Differential Equations and their Applications, Birkhäuser-Verlag (1997) 21-44. Zbl0920.35019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.