G-convergence of monotone operators

Valeria Chiado'Piat; Gianni Dal Maso; Anneliese Defranceschi

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 3, page 123-160
  • ISSN: 0294-1449

How to cite


Chiado'Piat, Valeria, Dal Maso, Gianni, and Defranceschi, Anneliese. "G-convergence of monotone operators." Annales de l'I.H.P. Analyse non linéaire 7.3 (1990): 123-160. <http://eudml.org/doc/78219>.

author = {Chiado'Piat, Valeria, Dal Maso, Gianni, Defranceschi, Anneliese},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Besov-Triebel-Lizorkin spaces; G-convergence; maximal monotone operators},
language = {eng},
number = {3},
pages = {123-160},
publisher = {Gauthier-Villars},
title = {G-convergence of monotone operators},
url = {http://eudml.org/doc/78219},
volume = {7},
year = {1990},

AU - Chiado'Piat, Valeria
AU - Dal Maso, Gianni
AU - Defranceschi, Anneliese
TI - G-convergence of monotone operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 3
SP - 123
EP - 160
LA - eng
KW - Besov-Triebel-Lizorkin spaces; G-convergence; maximal monotone operators
UR - http://eudml.org/doc/78219
ER -


  1. [1] A. Ambrosetti and C. Sbordone, Γ-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital., 13, 1976, pp. 352-362. Zbl0345.49004MR487703
  2. [2] H. Attouch, Introduction a l'homogénisation d'inéquations variationnelles, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 40, 1982, pp. 1-23. Zbl0523.35004MR724197
  3. [3] H. Attouch, Variational convergence for functions and operators, Pitman, London, 1984. Zbl0561.49012MR773850
  4. [4] V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces, Editura Academiei, Bucuresti, 1978. Zbl0379.49010MR513634
  5. [5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  6. [6] L. Boccardo and Th. Gallouet, Homogenization with jumping nonlinearities, Ann. Mat. Pura Appl., Vol. 138, 1984, pp. 211-221. Zbl0568.35038MR779543
  7. [7] L. Boccardo and F. Murat, Remarques sur l'homogénéisation de certains problèmes quasi linéaires, Portugal. Math., Vol. 41, 1982, pp. 535-562. Zbl0524.35042MR766874
  8. [8] L. Boccardo and F. Murat, Homogénéisation de problèmes quasi linéaires, Studio di problemi-limite della analisi funzionale (Bressanone, 1981), 13-51, Pitagora editrice, Bologna, 1982. 
  9. [9] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  10. [10] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings of Symposia Pure Math., 18, American Mathematical Society, 1976. Zbl0327.47022
  11. [11] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lec. Notes Math., 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR467310
  12. [12] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., Vol. 8, 1973, pp. 391-411. Zbl0274.35002MR348255
  13. [13] N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura Appl., Vol. 146, 1987, pp. 1-13. Zbl0636.35027MR916685
  14. [14] N. Fusco and G. Moscariello, Further results on the homogenization of quasilinear operators, Ricerche Mat.35, 1986, pp. 231-246. Zbl0658.35016MR932435
  15. [15] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal., 7, 1977, pp. 149-182. Zbl0368.60006MR507504
  16. [16] K. Kuratowski, Topology, Academic Press, New York, 1968. MR259835
  17. [17] M. Matzeu, Su un tipo di continuità dell'operatore subdifferenziale, Boll. Un. Mat. Ital., Vol. 14–B, 1977, pp. 480-490. Zbl0376.28004MR461235
  18. [18] F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977. 
  19. [19] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. PisaCl. Sci., Vol. 5, 1978, pp. 489-507. Zbl0399.46022MR506997
  20. [20] F. Murat and L. Tartar, Homogénéisation d'opérateurs monotones, Manuscript, 1981. 
  21. [21] D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Editura Academiei, Bucuresti, 1978. Zbl0423.47021MR531036
  22. [22] U.E. Raitum, On the G-Convergence of quasilinear elliptic operators with unbounded coefficients, Soviet Math. Dokl., 24, 1981, pp. 472-476. Zbl0501.35033MR636853
  23. [23] E. Sanchez-Palencia, Non homogeneous media and vibration theory, Lec. Notes Phys., 127, Springer-Verlag, Berlin, 1980. Zbl0432.70002
  24. [24] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 21, 1967, pp. 657-699. Zbl0153.42103MR225015
  25. [25] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. 22, 1968, pp. 577-597. Zbl0174.42101MR240443
  26. [26] S. Spagnolo, Convergence in energy for elliptic operators, Proc. Third Symp. Numer. Solut. Partial Diff. Equat.(College Park, 1975), pp. 469-498, Academic Press, San Diego, 1976. Zbl0347.65034MR477444
  27. [27] L. Tartar, Cours Peccot, Collège de France, Paris, 1977. 
  28. [28] L. Tartar, Quelques remarques sur l'homogénéisation, Proceedings of theJapan-France seminar1976 "Functional analysis and numerical analysis ", pp. 469-482, Japan Society for the Promotion of Science, 1978. 
  29. [29] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis & mechanics, Heriot-Watt symposium, Vol. IV, Res. Notes Math., Vol. 39, pp. 136-211, Pitman, London, 1979. Zbl0437.35004
  30. [30] V.V. Zhikov, S.M. Kozlov, O.A. Oleinik and KHA T'EN Ngoan, Averaging and G-convergence of differential operators, Russian Math. Surveys, Vol. 34, 1979, pp. 69- 147. Zbl0445.35096MR562800

Citations in EuDML Documents

  1. Jean-François Babadjian, Marco Barchiesi, A variational approach to the local character of G -closure : the convex case
  2. Nils Svanstedt, A note on bounds for non-linear multivalued homogenized operators
  3. Nils Svanstedt, Multiscale stochastic homogenization of convection-diffusion equations
  4. Dominique Blanchard, Luciano Carbone, Antonio Gaudiello, Homogenization of a monotone problem in a domain with oscillating boundary
  5. Michel Bellieud, Guy Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects
  6. Gilles Francfort, François Murat, Luc Tartar, Monotone operators in divergence form with x -dependent multivalued graphs
  7. François Murat, Existence of a solution to - div a ( x , D u ) = f with a ( x , ξ ) a maximal monotone graph in ξ for every x given
  8. Nils Svanstedt, Stochastic homogenization of a class of monotone eigenvalue problems
  9. Fabio Paronetto, Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach
  10. Andrea Braides, Valeria Chiadó Piat, Anneliese Defranceschi, Homogenization of almost periodic monotone operators

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.