Steady tearing mode instabilities with a resistivity depending on a flux function

Atanda Boussari; Erich Maschke; Bernard Saramito

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 6, page 1135-1148
  • ISSN: 0764-583X

How to cite

top

Boussari, Atanda, Maschke, Erich, and Saramito, Bernard. "Steady tearing mode instabilities with a resistivity depending on a flux function." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1135-1148. <http://eudml.org/doc/193965>.

@article{Boussari1999,
author = {Boussari, Atanda, Maschke, Erich, Saramito, Bernard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {plasma tearing mode instabilities; plane slab model; MHD equations; bifurcation problem; compact operator; bifurcation parameter},
language = {eng},
number = {6},
pages = {1135-1148},
publisher = {Dunod},
title = {Steady tearing mode instabilities with a resistivity depending on a flux function},
url = {http://eudml.org/doc/193965},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Boussari, Atanda
AU - Maschke, Erich
AU - Saramito, Bernard
TI - Steady tearing mode instabilities with a resistivity depending on a flux function
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1135
EP - 1148
LA - eng
KW - plasma tearing mode instabilities; plane slab model; MHD equations; bifurcation problem; compact operator; bifurcation parameter
UR - http://eudml.org/doc/193965
ER -

References

top
  1. [1] A. Boussari, Etude des instabilités tearing avec résistivité variable. Ph.D. thesis, University of Clermont-Ferrand, France (1996). 
  2. [2] X.L. Chen and P.J. Morrison, Nonlinear interactions of tearing modes in the presence of shear flow. Institute for fusion studies, University of Texas (1991). MR1155790
  3. [3] M.G. Crandall and P.H. Rabinowitz, Bifurcation for simple eigenvalues. J. Funct. Anal. 8 (1971) 321-340. Zbl0219.46015MR288640
  4. [4] C. Foias and R. Temam, Remarque sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Sup., Pisa Cl. Sci. Ser. IV 5 (1978) 29-63. Zbl0384.35047MR481645
  5. [5] R. Grauer, Nonlinear interactions of tearing modes in the vicinity of a bifurcation point of codimension two. Phys. D 35 (1989) 107. Zbl0667.76071MR1004188
  6. [6] J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584
  7. [7] R.D. Parker, Nonlinear behaviour of the resistive tearing instability in plasmas. Thesis, Australian National University (1987). 
  8. [8] B. Saramito, Analyse mathématique et numérique de la stabilité d'un plasma. Thèse d'État, Université Paris VI, France (1987). 
  9. [9] B. Saramito, Stabilité d'un plasma : modélisation mathématique et simulation numérique. Masson (1994). MR1324575
  10. [10] B. Saramito and E. Maschke, Bifurcation of steady tearing states. Int. Workshop on Magn. Reconn. and Turb., Cargèse (1985), Éditions de Physique, Les Ulis (1985). 
  11. [11] J. Simon, Régularité de la composée de deux fonctions et applications. Boll Un. Mat. Ital. B (5) 16 (1979) 501-522. Zbl0409.35076MR546471

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.