Instability of the eikonal equation and shape from shading
- Volume: 34, Issue: 1, page 127-138
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBarnes, Ian, and Zhang, Kewei. "Instability of the eikonal equation and shape from shading." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 127-138. <http://eudml.org/doc/193974>.
@article{Barnes2000,
author = {Barnes, Ian, Zhang, Kewei},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {instability; numerical analysis; computer image analysis},
language = {eng},
number = {1},
pages = {127-138},
publisher = {Dunod},
title = {Instability of the eikonal equation and shape from shading},
url = {http://eudml.org/doc/193974},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Barnes, Ian
AU - Zhang, Kewei
TI - Instability of the eikonal equation and shape from shading
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 127
EP - 138
LA - eng
KW - instability; numerical analysis; computer image analysis
UR - http://eudml.org/doc/193974
ER -
References
top- [1] R.A. Adams, Sobolev Space. Academic Press New York (1975). Zbl0314.46030MR450957
- [2] J.M. Ball, A version of the fundamental theorem for Young measure. Lect. Notes Phys. Springer Verlag 344 (1988) 207-215. Zbl0991.49500MR1036070
- [3] A.R. Bruss, results applicable to computer vision. J. Math. Phys. 23 (1982) 890-896. Zbl0502.35079MR655907
- [4] J. Chabrowski and K.-W. Zhang, On shape from shading problem Functional Analysis, Approximation Theory and Numerical Analysis, J.M. Rassias Ed., World Scientific (1994) 93-105. Zbl0878.35026MR1298653
- [5] B. DacorognaDirect Methods in the Calculus of Variations. Springer-Verlag (1989). Zbl0703.49001MR990890
- [6] P. Deift and J. Sylvester, Some remarks on the shape-from-shading problem in computer vision. J. Math. Anal. Appl. 84 (1981) 235-248. Zbl0485.35081MR639534
- [7] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Stud. in Adv. Math. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
- [8] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod Paris (1974). Zbl0281.49001MR463993
- [9] L. Gritz, Blue Moon Rendering Tools: Ray tracing software available from ftp://ftp.gwu.edu/pub/graphics/BMRT (1995).
- [10] B.K.P. Horn, Robot Vision. Engineering and Computer Science Series, MIT Press, Mac Graw Hill (1986).
- [11] B.K.P. Horn and M.J. Brooks, Shape from Shading. Ed. MIT Press Ser. in Artificial Intelligence (1989). Zbl0629.65125MR1062877
- [12] B.K.P. Horn and M.J. Brooks, Variational Approach to Shape from Shading in [11]. Zbl0629.65125
- [13] S. Levy, T. Munzner and M. Phillips, Geomview Visualisation software available from ftp.geom.umn.edu or http://www.geom.umn.edu/locate/geomview.
- [14] P.-L. Lions, E. Rouy and A. Tourin, Shape-from-shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323-353. Zbl0804.68160MR1206667
- [15] Pixar, The RenderMan Interface, version 3.1, official specification. Pixar (1989).
- [16] M. Phillips, S. Levy and T. Munzner, Geomview: An Interactive Geometry Viewer. Notices Amer. Math. Soc. 40 (1993) 985-988.
- [17] E. Rouy and A. Tourin, A viscosity solution approach to shape-from-shading. SIAM J. Numer. Anal. 29 (1992) 867-884. Zbl0754.65069MR1163361
- [18] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970). Zbl0207.13501MR290095
- [19] L. Tartar, Compensated compactness and partial differential equations, in Microstructure and Phase Transitions, D. Kinderlehrer et al. Eds., Springer Verlag (1992). Zbl0437.35004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.