Zero-dissipation limit for nonlinear waves

Jerry L. Bona; Jiahong Wu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 275-301
  • ISSN: 0764-583X

How to cite

top

Bona, Jerry L., and Wu, Jiahong. "Zero-dissipation limit for nonlinear waves." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 275-301. <http://eudml.org/doc/193986>.

@article{Bona2000,
author = {Bona, Jerry L., Wu, Jiahong},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equations; dispersion; dissipation; Korteweg-de Vries-Burgers equation; BBM-Burgers equation; zero dissipation limit; optimal convergence rates},
language = {eng},
number = {2},
pages = {275-301},
publisher = {Dunod},
title = {Zero-dissipation limit for nonlinear waves},
url = {http://eudml.org/doc/193986},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Bona, Jerry L.
AU - Wu, Jiahong
TI - Zero-dissipation limit for nonlinear waves
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 275
EP - 301
LA - eng
KW - evolution equations; dispersion; dissipation; Korteweg-de Vries-Burgers equation; BBM-Burgers equation; zero dissipation limit; optimal convergence rates
UR - http://eudml.org/doc/193986
ER -

References

top
  1. [1] L. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Non-local models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. Zbl0699.35227MR1044731
  2. [2] C.J. Amick, J.L. Bona and M.E. Schonbek, Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989) 1-49. Zbl0689.35081MR1012198
  3. [3] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear Systems. Philos. Trans. Royal Soc. London Ser. A 272 (1972) 47-78. Zbl0229.35013MR427868
  4. [4] P. Biler, Asymptotic behavior in time of some equations generalizing the Korteweg-de Vries equation. Bull. Polish Acad. Sci. 32 (1984) 275-282. Zbl0561.35064MR785985
  5. [5] J.L. Bona, On solitary waves and their role in the evolution of long waves. In Applications of Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley and K. Kirchgâssner Eds, Pitman, London (1983) 183=205. Zbl0498.76023
  6. [6] J.L. Bona and P.J. Bryant, A mathematical model for long waves generated by a wave-maker in nonlinear dispersive Systems. Proc. Cambridge Philos. Soc. 73 (1973) 391-405. Zbl0261.76007MR339651
  7. [7] J.L. Bona, F. Demengel and K. Promislow, Fourier splitting and the dissipation of nonlinear waves. Proc. Royal Soc. Edinburgh 129A (1999) 477-502. Zbl0947.35130MR1693637
  8. [8] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, The effect of dissipation on solutions of the generalized KdV equation. J. Comp. Appl. Math. 74 (1996) 127-154. Zbl0869.65059MR1430371
  9. [9] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Poyal Soc. Lond. Ser. A 351 (1995) 107-164. Zbl0824.65095MR1336983
  10. [10] J.L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves. In Evolution Equations, G. Ferreyra, G.R. Goldstein, and F. Neubrander Eds, Marcel Dekker, Inc.: New York (1995) 65-94. Zbl0817.35092MR1300420
  11. [11] J.L. Bona and L. Luo, A generalized Korteweg-de Vries equation in a quarter plane. Contemporary Math. 221 (1999) 59-125. Zbl0922.35150MR1647197
  12. [12] J.L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive, dissipative wave equations. Diff. & Intégral Equ. 6 (1993) 961-980. Zbl0780.35098MR1230473
  13. [13] J.L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Cont. Dynamical Systems 1 (1995) 151-193. Zbl0870.35088MR1355869
  14. [14] J.L. Bona, W.G. Pritchard and L.R. Scott, An évaluation of a model equation for water waves. Philos. Trans. Royal Soc. Lond. Ser. A 302 (1981) 457-510. Zbl0497.76023MR633485
  15. [15] J.L. Bona, K. Promislow and C. E. Wayne, On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. & Computers in Simulation 37 (1994) 265-277. Zbl0823.35018MR1308103
  16. [16] J.L. Bona, K. Promislow and C. E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995) 1179-1206. Zbl0837.35130MR1363406
  17. [17] J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. Lond. Ser. A 278 (1975) 555-601. Zbl0306.35027MR385355
  18. [18] J.L. Bona and R. Winther, The KdV equation, posed in a quarter plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. Zbl0529.35069MR718811
  19. [19] J.L. Bona and R. Winther, KdV equation in a quarter plane, continuous dependence results. Diff. & Integral Equ. 2 (1989) 228-250. Zbl0734.35120MR984190
  20. [20] J.L. Bona and F.B. Weissler, Similarity solutions of the generalized Korteweg-de Vries equation. Math. Proc. Cambridge Philos. Soc. 127 (1999) 323-351. Zbl0939.35164MR1705463
  21. [21] D. Dix, The dissipation of nonlinear dispersive waves. Comm. PDE 17 (1992) 1665-1693. Zbl0762.35110MR1187625
  22. [22] R.S. Johnson, A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42 (1970) 49-60. Zbl0213.54904MR268546
  23. [23] R.S. Johnson, Shallow water waves on a viscous fluid - The undular bore. Phys. Fluids 15 (1972) 1693-1699. Zbl0264.76014
  24. [24] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 27-94. Zbl0808.35128MR1211741
  25. [25] C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573-603. Zbl0848.35114MR1329387
  26. [26] R.M. Miura, C.S. Gardner and M.D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204-1209. Zbl0283.35019MR252826
  27. [27] P. Naumkin and I. Shishmarev, Nonlinear nonlocal equations in the theory of waves. Series Translations of Math. Mono. 133, American Math. Soc.: Providence (1994). Zbl0802.35002MR1261868
  28. [28] L.A. Ostrovsky, Short-wave asymptotics of weak shock waves and solitons in mechanics., Internat. J. Non-linear Mech. 11 (1976) 401-406. Zbl0351.73036MR443516
  29. [29] E. Ott and R.N. Sudan, Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (1969) 2388-2394. Zbl0193.58203MR258349
  30. [30] J.-C. Saut, , Sur quelques géneralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl. 58 (1979) 21-61. Zbl0449.35083MR533234
  31. [31] J. Wu, , The inviscid limit of the complex Ginzburg-Landau equation. J. Differential Equations 142 (1998) 413-433. Zbl0922.76288MR1601876
  32. [32] N.J. Zabusky and C.J. Galvin, Shallow-water waves, the KdV equation and solitons. J. Fluid Mech. 47 (1971) 811-824. 
  33. [33] B.-Y. Shang, , Taylor series expansion for solutions of the KdV equation with respect to their initial values. J. Funct. Anal. 129 (1995) 293-324. Zbl0835.35130MR1327180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.