Limiting behavior for an iterated viscosity

Ciprian Foias; Michael S. Jolly; Oscar P. Manley

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 353-376
  • ISSN: 0764-583X

How to cite

top

Foias, Ciprian, Jolly, Michael S., and Manley, Oscar P.. "Limiting behavior for an iterated viscosity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 353-376. <http://eudml.org/doc/193990>.

@article{Foias2000,
author = {Foias, Ciprian, Jolly, Michael S., Manley, Oscar P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {ordinary differential equation; low wave number velocity mode; iterative process; two-dimensional Navier-Stokes equations; kinematic viscosity; iterated viscosity; limiting dynamical system},
language = {eng},
number = {2},
pages = {353-376},
publisher = {Dunod},
title = {Limiting behavior for an iterated viscosity},
url = {http://eudml.org/doc/193990},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Foias, Ciprian
AU - Jolly, Michael S.
AU - Manley, Oscar P.
TI - Limiting behavior for an iterated viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 353
EP - 376
LA - eng
KW - ordinary differential equation; low wave number velocity mode; iterative process; two-dimensional Navier-Stokes equations; kinematic viscosity; iterated viscosity; limiting dynamical system
UR - http://eudml.org/doc/193990
ER -

References

top
  1. [1] P. Constantin and C. Foias, Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988). Zbl0687.35071MR972259
  2. [2] N. Dunford and J. T. Schwartz, Book Linear Operators, Wiley, New York (1958) Part II. Zbl0084.10402
  3. [3] C. Foias, What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180. Zbl0890.76030MR1467006
  4. [4] C. Foias, O. P. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118. Zbl0663.76054MR934703
  5. [5] C. Foias, O. P. Manley and R. Temam, Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911. Zbl0732.76001MR1205478
  6. [6] C. Foias, O. P. Manley and R. Temam, Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583. Zbl0806.76015MR1238896
  7. [7] C. Foias, O. P. Manley, R. Temam and Y. M. Treve, Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188. Zbl0584.35007MR732571
  8. [8] C. Foias and B. Nicolaenko, On the algebra of the curl operator in the Navier-Stokes equations (in preparation). 
  9. [9] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967) 417-1423. 
  10. [10] W. Heisenberg, On the theory of statistical and isotropic turbulence. Proc. Roy.Soc. Lond. Ser. A. 195 (1948) 402-406. Zbl0035.25605MR30851
  11. [11] E. Hopf, A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322. Zbl0031.32901MR30113
  12. [12] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd édition, Springer-Verlag, New York (1997). Zbl0871.35001MR1441312
  13. [13] T. von Karman, Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.