Modelling of the interaction of small and large eddies in two dimensional turbulent flows
- Volume: 22, Issue: 1, page 93-118
- ISSN: 0764-583X
Access Full Article
topHow to cite
topFoias, C., Manley, O., and Temam, R.. "Modelling of the interaction of small and large eddies in two dimensional turbulent flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 93-118. <http://eudml.org/doc/193526>.
@article{Foias1988,
author = {Foias, C., Manley, O., Temam, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {small eddies; approximate manifold; two-dimensional turublent flows; small structures},
language = {eng},
number = {1},
pages = {93-118},
publisher = {Dunod},
title = {Modelling of the interaction of small and large eddies in two dimensional turbulent flows},
url = {http://eudml.org/doc/193526},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Foias, C.
AU - Manley, O.
AU - Temam, R.
TI - Modelling of the interaction of small and large eddies in two dimensional turbulent flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 93
EP - 118
LA - eng
KW - small eddies; approximate manifold; two-dimensional turublent flows; small structures
UR - http://eudml.org/doc/193526
ER -
References
top- [1] H. BRÉZIS and T. GALLOUET, « Nonlinear Schroedinger evolution equation», Nonlinear Analysis Theory Methods and Applications, Vol.4, 1980, p. 677. Zbl0451.35023MR582536
- [2] C. FOIAS, O. MANLEY and R. TEMAM, « Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents», C.R. Ac. Sc.Paris, 305, Série I, 1987; pp. 497-500. Zbl0624.76072MR916319
- [3] C. FOIAS, O. MANLEY and R. TEMAM, to appear. MR1205478
- [4] C. FOIAS, O. MANLEY, R. TEMAM and Y. TREVE, « Asymptotic analysis of the Navier-Stokes equations», Physica 6D, 1983, pp. 157-188. Zbl0584.35007MR732571
- [5] C. FOIAS, B. NICOLAENKO, G. SELL and R. TEMAM, « Variétés inertielles pour l'équation de Kuramoto-Sivashinsky»,C. R. Ac. Sc. Paris, 301, Série I, 1985pp. 285-288 and « Inertial Manifolds for the Kuramoto-Sivashinsky équations and an estimate of their lowest dimension», J. Math. Pure AppL, 1988. Zbl0591.35063MR803219
- [6] C. FOIAS and G. PRODI, « Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2», Rend. Sem. Mat. Padova, Vol. 39, 1967, pp. 1-34. Zbl0176.54103MR223716
- [7] C. FOIAS and R. TEMAM, « Some analytic and geometrie properties of the solutions of the Navier-Stokes equations», J. Math. Pure Appl, Vol.58, 1979, pp. 339-368. Zbl0454.35073MR544257
- [8] C. FOIAS and R. TEMAM, Finite parameter approximative structures of actual flows», in Nonlinear Problems : Present and Future, A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North Holland, Amsterdam, 1982. Zbl0493.76026MR675639
- [9] A. N. KOLMOGOROV, C. R. Ac. Sc URSS, Vol.30, 1941, p. 301; Vol. 31, 1941, p. 538; Vol. 32, 1941, p. 16.
- [10] R. H. KRAICHNAN, « Inertial ranges in two dimensional turbulence», Phys. Fluids, Vol. 10, 1967, pp. 1417-1423.
- [11] G. MÉTIVIER, « Valeurs propres d'opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces», J. Math. Pure Appl., Vol. 57, 1978, pp. 133-156. Zbl0328.35029MR505900
- [12] R. TEMAM, Navier-Stokes Equations, 3rd Revised Ed., North Holland, Amsterdam, 1984. Zbl0568.35002
- [13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, NSF/CBMS Regional Conferences Series in Appl. Math., SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
- [14] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. Zbl0662.35001MR953967
- [15] E. TITI, Article in preparation.
- [16] J. H. WELLS and L. R. WILLIAMS, Imbeddings and Extensions in Analysis, Springer-Verlag, Heidelberg, New York Zbl0324.46034
Citations in EuDML Documents
top- Roger Temam, Induced trajectories and approximate inertial manifolds
- Ciprian Foias, Michael S. Jolly, Oscar P. Manley, Limiting behavior for an iterated viscosity
- Ciprian Foias, Michael S. Jolly, Oscar P. Manley, Limiting Behavior for an Iterated Viscosity
- Zdeněk Skalák, A continuity property for the inverse of Mañé's projection
- Martine Marion, Adeline Mollard, An Adaptive Multi-level method for Convection Diffusion Problems
- Rolf Bronstering, Min Chen, Bifurcations of finite difference schemes and their approximate inertial forms
- Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling
- O. Goubet, Separation of variables in the Stokes problem application to its finite element multiscale approximation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.