Modelling of the interaction of small and large eddies in two dimensional turbulent flows

C. Foias; O. Manley; R. Temam

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 1, page 93-118
  • ISSN: 0764-583X

How to cite

top

Foias, C., Manley, O., and Temam, R.. "Modelling of the interaction of small and large eddies in two dimensional turbulent flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 93-118. <http://eudml.org/doc/193526>.

@article{Foias1988,
author = {Foias, C., Manley, O., Temam, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {small eddies; approximate manifold; two-dimensional turublent flows; small structures},
language = {eng},
number = {1},
pages = {93-118},
publisher = {Dunod},
title = {Modelling of the interaction of small and large eddies in two dimensional turbulent flows},
url = {http://eudml.org/doc/193526},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Foias, C.
AU - Manley, O.
AU - Temam, R.
TI - Modelling of the interaction of small and large eddies in two dimensional turbulent flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 93
EP - 118
LA - eng
KW - small eddies; approximate manifold; two-dimensional turublent flows; small structures
UR - http://eudml.org/doc/193526
ER -

References

top
  1. [1] H. BRÉZIS and T. GALLOUET, « Nonlinear Schroedinger evolution equation», Nonlinear Analysis Theory Methods and Applications, Vol.4, 1980, p. 677. Zbl0451.35023MR582536
  2. [2] C. FOIAS, O. MANLEY and R. TEMAM, « Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents», C.R. Ac. Sc.Paris, 305, Série I, 1987; pp. 497-500. Zbl0624.76072MR916319
  3. [3] C. FOIAS, O. MANLEY and R. TEMAM, to appear. MR1205478
  4. [4] C. FOIAS, O. MANLEY, R. TEMAM and Y. TREVE, « Asymptotic analysis of the Navier-Stokes equations», Physica 6D, 1983, pp. 157-188. Zbl0584.35007MR732571
  5. [5] C. FOIAS, B. NICOLAENKO, G. SELL and R. TEMAM, « Variétés inertielles pour l'équation de Kuramoto-Sivashinsky»,C. R. Ac. Sc. Paris, 301, Série I, 1985pp. 285-288 and « Inertial Manifolds for the Kuramoto-Sivashinsky équations and an estimate of their lowest dimension», J. Math. Pure AppL, 1988. Zbl0591.35063MR803219
  6. [6] C. FOIAS and G. PRODI, « Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2», Rend. Sem. Mat. Padova, Vol. 39, 1967, pp. 1-34. Zbl0176.54103MR223716
  7. [7] C. FOIAS and R. TEMAM, « Some analytic and geometrie properties of the solutions of the Navier-Stokes equations», J. Math. Pure Appl, Vol.58, 1979, pp. 339-368. Zbl0454.35073MR544257
  8. [8] C. FOIAS and R. TEMAM, Finite parameter approximative structures of actual flows», in Nonlinear Problems : Present and Future, A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North Holland, Amsterdam, 1982. Zbl0493.76026MR675639
  9. [9] A. N. KOLMOGOROV, C. R. Ac. Sc URSS, Vol.30, 1941, p. 301; Vol. 31, 1941, p. 538; Vol. 32, 1941, p. 16. 
  10. [10] R. H. KRAICHNAN, « Inertial ranges in two dimensional turbulence», Phys. Fluids, Vol. 10, 1967, pp. 1417-1423. 
  11. [11] G. MÉTIVIER, « Valeurs propres d'opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces», J. Math. Pure Appl., Vol. 57, 1978, pp. 133-156. Zbl0328.35029MR505900
  12. [12] R. TEMAM, Navier-Stokes Equations, 3rd Revised Ed., North Holland, Amsterdam, 1984. Zbl0568.35002
  13. [13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, NSF/CBMS Regional Conferences Series in Appl. Math., SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
  14. [14] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. Zbl0662.35001MR953967
  15. [15] E. TITI, Article in preparation. 
  16. [16] J. H. WELLS and L. R. WILLIAMS, Imbeddings and Extensions in Analysis, Springer-Verlag, Heidelberg, New York Zbl0324.46034

Citations in EuDML Documents

top
  1. Roger Temam, Induced trajectories and approximate inertial manifolds
  2. Ciprian Foias, Michael S. Jolly, Oscar P. Manley, Limiting behavior for an iterated viscosity
  3. Ciprian Foias, Michael S. Jolly, Oscar P. Manley, Limiting Behavior for an Iterated Viscosity
  4. Martine Marion, Adeline Mollard, An Adaptive Multi-level method for Convection Diffusion Problems
  5. Zdeněk Skalák, A continuity property for the inverse of Mañé's projection
  6. Rolf Bronstering, Min Chen, Bifurcations of finite difference schemes and their approximate inertial forms
  7. Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling
  8. O. Goubet, Separation of variables in the Stokes problem application to its finite element multiscale approximation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.