Geometrically nonlinear shape-memory polycrystals made from a two-variant material
Robert V. Kohn; Barbara Niethammer
- Volume: 34, Issue: 2, page 377-398
- ISSN: 0764-583X
Access Full Article
topHow to cite
topKohn, Robert V., and Niethammer, Barbara. "Geometrically nonlinear shape-memory polycrystals made from a two-variant material." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 377-398. <http://eudml.org/doc/193991>.
@article{Kohn2000,
author = {Kohn, Robert V., Niethammer, Barbara},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {geometrically nonlinear shape-memory polycrystals; two-variant elastic material; symmetry},
language = {eng},
number = {2},
pages = {377-398},
publisher = {Dunod},
title = {Geometrically nonlinear shape-memory polycrystals made from a two-variant material},
url = {http://eudml.org/doc/193991},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Kohn, Robert V.
AU - Niethammer, Barbara
TI - Geometrically nonlinear shape-memory polycrystals made from a two-variant material
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 377
EP - 398
LA - eng
KW - geometrically nonlinear shape-memory polycrystals; two-variant elastic material; symmetry
UR - http://eudml.org/doc/193991
ER -
References
top- [1] J.M. Bail and R.D. James, Proposed experimental test of a theory of fine microstructures and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. Zbl0758.73009
- [2] J.M. Ball and F. Murat, Wlp-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. Zbl0549.46019MR759098
- [3] K. Bhattacharya, Theory of martensitic microstructure and the shape-memory effect, unpublished lecture notes.
- [4] K. Bhattacharya and R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rat Mech. Anal. 139 (1998) 99-180. Zbl0894.73225MR1478776
- [5] A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. Detta XL, V. Ser., Mem. Mat. 9 (1985) 313-322. Zbl0582.49014MR899255
- [6] O.P. Bruno and G.H. Goldsztein, A fast algorithm for the simulation of polycrystalline misfïts: martensitic transformations in two space dimensions, Proc. Roy. Soc. Lond. Ser. A (to appear). Zbl0968.74063MR1809360
- [7] O.P. Bruno and G.H. Goldsztein, Numerical simulation of martensitic transformations in two- and three-dimensional polycrystals, J. Mech. Phys. Solids (to appear). Zbl0966.74078MR1766400
- [8] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. Zbl0102.04302MR131498
- [9] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413. Zbl0102.17404MR138225
- [10] F. JohnBounds for deformations in terms of average strains, in Inequalities III, O. Shisha Ed., Academic Press (1972) 129-143. Zbl0292.53003MR344392
- [11] F. John, Uniqueness of Non-Linear Elastic Equilibrium for Prescribed Boundary Displacements and Sufficiently Small Strains. Comm. Pure Appl. Math. 25 (1972) 617-635. Zbl0287.73009MR315308
- [12] R. V. Kohn, The relaxation of a double-well energy. Continuum Mech Thermodyn. 3 (1991) 193-236. Zbl0825.73029MR1122017
- [13] R. V. Kohn and V. Lods, in preparation (1999).
- [14] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems II. Comm. Pure. Appl. Math. 34 (1986) 139-182. Zbl0621.49008MR820067
- [15] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal.99 (1987) 189-212. Zbl0629.73009MR888450
- [16] Y. C. Shu and K. Bhattacharya, The influence of texture on the shape-memory effect in polycrystals. Acta. Mater. 46 (1998) 5457-5473.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.