Some models of Cahn-Hilliard equations in nonisotropic media
- Volume: 34, Issue: 3, page 539-554
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMiranville, Alain. "Some models of Cahn-Hilliard equations in nonisotropic media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 539-554. <http://eudml.org/doc/194001>.
@article{Miranville2000,
author = {Miranville, Alain},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Cahn-Hillard equation; finite dimensional attractor; existence; uniqueness; initial value problem},
language = {eng},
number = {3},
pages = {539-554},
publisher = {Dunod},
title = {Some models of Cahn-Hilliard equations in nonisotropic media},
url = {http://eudml.org/doc/194001},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Miranville, Alain
TI - Some models of Cahn-Hilliard equations in nonisotropic media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 539
EP - 554
LA - eng
KW - Cahn-Hillard equation; finite dimensional attractor; existence; uniqueness; initial value problem
UR - http://eudml.org/doc/194001
ER -
References
top- [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92. Zbl0093.10401
- [2] A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion Systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. Zbl0846.35061MR1362671
- [3] A. V. Babin and M. I. Vishik, Attractors of evolution equations. North-Holland, Amsterdam (1991). Zbl0778.58002MR1156492
- [4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson (1983). Zbl0511.46001MR697382
- [5] J. W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795-801.
- [6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform System I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267.
- [7] M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. Zbl0939.35042MR1748727
- [8] M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear). Zbl0987.35156MR1807441
- [9] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. Zbl0838.58021MR1273705
- [10] L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted). Zbl1002.35062
- [11] J. W. Cholewe and T. Dlotko, Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. Zbl0803.35013MR1265364
- [12] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. Zbl0831.35088MR1327930
- [13] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. Masson (1994). Zbl0842.58056MR1335230
- [14] M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. Zbl0959.35025MR1665748
- [15] C. M. Elliot and S. Luckhauss, A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint.
- [16] P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. Zbl0980.34051MR1617294
- [17] C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996).
- [18] C. Galusinski, M. Hnid and A. Miranville, Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. Zbl1012.35010MR1668525
- [19] M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. Zbl0885.35121MR1387065
- [20] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [21] D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998) Zbl0912.35029MR1646238
- [22] M. Marion and R. Temam, Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P. G. Ciarlet and J. L. Lions eds. (to appear) Zbl0921.76040MR1665429
- [23] A. Miranville, Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. Zbl06587011MR1609661
- [24] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150. Zbl1101.35334MR1669003
- [25] A. Miranville, Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear). Zbl0989.35066MR1835609
- [26] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case C. R. Acad. Sci. 328 (1999) 907-912. Zbl1141.35340MR1689877
- [27] A. Miranville, Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100. Zbl0930.35175MR1696213
- [28] A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252. Zbl0932.35118MR1701394
- [29] A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345. Zbl0936.35036MR1612825
- [30] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. Zbl0691.35019MR976973
- [31] R. Temam, Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997). Zbl0871.35001MR1441312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.