Some models of Cahn-Hilliard equations in nonisotropic media

Alain Miranville

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 539-554
  • ISSN: 0764-583X

How to cite

top

Miranville, Alain. "Some models of Cahn-Hilliard equations in nonisotropic media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 539-554. <http://eudml.org/doc/194001>.

@article{Miranville2000,
author = {Miranville, Alain},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Cahn-Hillard equation; finite dimensional attractor; existence; uniqueness; initial value problem},
language = {eng},
number = {3},
pages = {539-554},
publisher = {Dunod},
title = {Some models of Cahn-Hilliard equations in nonisotropic media},
url = {http://eudml.org/doc/194001},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Miranville, Alain
TI - Some models of Cahn-Hilliard equations in nonisotropic media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 539
EP - 554
LA - eng
KW - Cahn-Hillard equation; finite dimensional attractor; existence; uniqueness; initial value problem
UR - http://eudml.org/doc/194001
ER -

References

top
  1. [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92. Zbl0093.10401
  2. [2] A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion Systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. Zbl0846.35061MR1362671
  3. [3] A. V. Babin and M. I. Vishik, Attractors of evolution equations. North-Holland, Amsterdam (1991). Zbl0778.58002MR1156492
  4. [4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson (1983). Zbl0511.46001MR697382
  5. [5] J. W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795-801. 
  6. [6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform System I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267. 
  7. [7] M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. Zbl0939.35042MR1748727
  8. [8] M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear). Zbl0987.35156MR1807441
  9. [9] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. Zbl0838.58021MR1273705
  10. [10] L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted). Zbl1002.35062
  11. [11] J. W. Cholewe and T. Dlotko, Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. Zbl0803.35013MR1265364
  12. [12] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. Zbl0831.35088MR1327930
  13. [13] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. Masson (1994). Zbl0842.58056MR1335230
  14. [14] M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. Zbl0959.35025MR1665748
  15. [15] C. M. Elliot and S. Luckhauss, A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint. 
  16. [16] P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. Zbl0980.34051MR1617294
  17. [17] C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996). 
  18. [18] C. Galusinski, M. Hnid and A. Miranville, Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. Zbl1012.35010MR1668525
  19. [19] M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. Zbl0885.35121MR1387065
  20. [20] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  21. [21] D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998) Zbl0912.35029MR1646238
  22. [22] M. Marion and R. Temam, Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P. G. Ciarlet and J. L. Lions eds. (to appear) Zbl0921.76040MR1665429
  23. [23] A. Miranville, Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. Zbl06587011MR1609661
  24. [24] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150. Zbl1101.35334MR1669003
  25. [25] A. Miranville, Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear). Zbl0989.35066MR1835609
  26. [26] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case C. R. Acad. Sci. 328 (1999) 907-912. Zbl1141.35340MR1689877
  27. [27] A. Miranville, Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100. Zbl0930.35175MR1696213
  28. [28] A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252. Zbl0932.35118MR1701394
  29. [29] A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345. Zbl0936.35036MR1612825
  30. [30] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. Zbl0691.35019MR976973
  31. [31] R. Temam, Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997). Zbl0871.35001MR1441312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.