Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter
Michael S. Vogelius; Darko Volkov
- Volume: 34, Issue: 4, page 723-748
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVogelius, Michael S., and Volkov, Darko. "Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 723-748. <http://eudml.org/doc/194010>.
@article{Vogelius2000,
author = {Vogelius, Michael S., Volkov, Darko},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Maxwell equations; inhomogeneities of small diameter; asymptotic formulas; identification problems},
language = {eng},
number = {4},
pages = {723-748},
publisher = {Dunod},
title = {Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter},
url = {http://eudml.org/doc/194010},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Vogelius, Michael S.
AU - Volkov, Darko
TI - Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 723
EP - 748
LA - eng
KW - Maxwell equations; inhomogeneities of small diameter; asymptotic formulas; identification problems
UR - http://eudml.org/doc/194010
ER -
References
top- [1] H. Ammari, S. Moskow and M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. Preprint, Rutgers University (1999); Inverse Problems (submitted). Zbl1075.78010
- [2] P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1971). Zbl0228.47001MR443383
- [3] L. Baratchart, J. Leblond, F. Mandréa and E.B. Saff, How can meromorhic approximation help to solve some 2D inverse problems for the Laplacian ? Inverse Problems 15 (1999) 79-90. Zbl0921.35187MR1675335
- [4] J. Blitz, Electrical and Magnetic Methods of Nondestructive Testing. IOP Publishing, Adam Hilger, New York (1991).
- [5] D. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. Zbl0916.35132MR1629995
- [6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Krieger Publishing Co., Malabar, Florida (1992). Zbl0522.35001
- [7] D. Dobson and F. Santosa, Nondestructive evaluation of plates using eddy current methods. Internat. J. Engrg. Sci. 36 (1998) 395-409. Zbl1210.78010MR1620127
- [8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York (1983). Zbl0562.35001MR737190
- [9] D. Griffiths, Introduction to Electrodynamics, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey (1989).
- [10] F. Gylys-Colwell, An inverse problem for the Helmholtz equation. Inverse Problems 12 (1996) 139-156. Zbl0860.35142MR1382235
- [11] J.D. Jackson, Classical Electrodynamics, 2nd Ed., Wiley, New York (1975). Zbl0997.78500MR436782
- [12] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. II. Interior results. Comm. Pure Appl. Math. 38 (1985) 643-667. Zbl0595.35092MR739921
- [13] M. Lassas, The impedance imaging problem as a low-frequency limit. Inverse Problems 13 (1997) 1503-1518. Zbl0903.35090MR1484001
- [14] N.N. Lebedev, Special Functions & Their Applications. Dover Publications, New York (1972). Zbl0271.33001MR350075
- [15] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143 (1996) 71-96. Zbl0857.35135MR1370758
- [16] P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. Zbl0804.35152MR1224101
- [17] A. Sahin and E.L. Miller, Electromagnetic scattering-based array processing methods for near-field object characterization. Preprint, Northeastern University (1998). Zbl1064.78506
- [18] E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations. J. Comput. Appl. Math. 42 (1992) 123-136. Zbl0757.65128MR1181585
- [19] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986) 91-112. Zbl0611.35088MR820341
- [20] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125 (1987) 153-169. Zbl0625.35078MR873380
- [21] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London (1962). Zbl0174.36202MR1349110JFM48.0412.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.