Structural properties of solutions to total variation regularization problems

Wolfgang Ring

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 4, page 799-810
  • ISSN: 0764-583X

How to cite

top

Ring, Wolfgang. "Structural properties of solutions to total variation regularization problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 799-810. <http://eudml.org/doc/194013>.

@article{Ring2000,
author = {Ring, Wolfgang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {optimality system; total variation regularization; piecewise constant function; convex optimization; Lebesgue decomposition; singular measures; ill-posed problem; least-squares problem},
language = {eng},
number = {4},
pages = {799-810},
publisher = {Dunod},
title = {Structural properties of solutions to total variation regularization problems},
url = {http://eudml.org/doc/194013},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Ring, Wolfgang
TI - Structural properties of solutions to total variation regularization problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 799
EP - 810
LA - eng
KW - optimality system; total variation regularization; piecewise constant function; convex optimization; Lebesgue decomposition; singular measures; ill-posed problem; least-squares problem
UR - http://eudml.org/doc/194013
ER -

References

top
  1. [1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. Zbl0809.35151MR1306801
  2. [2] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993). Zbl0776.49005MR1195128
  3. [3] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. Zbl0874.68299MR1440119
  4. [4] G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. Zbl0890.49010MR1483764
  5. [5] D. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. Zbl0866.65041MR1413421
  6. [6] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. Zbl0858.68121MR1398414
  7. [7] I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983). Zbl0565.49003MR769469
  8. [8] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
  9. [9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977). Zbl0361.35003MR473443
  10. [10] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984). Zbl0545.49018MR775682
  11. [11] K. Ito and K. Kunisch, An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél Math. Anal. Numér. 33 (1999) 1-21. Zbl0918.65050MR1685741
  12. [12] K. Ito and K. Kunisch, BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. Zbl0981.65149MR1776474
  13. [13] M. Z. Nashed and O. Scherzer, Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. Zbl0914.65067MR1642506
  14. [14] M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear). Zbl0991.94015MR1780806
  15. [15] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. Zbl0780.49028
  16. [16] W. Rudin, Real and Complex Analysis, 3rd edn McGraw-Hill, New York-St Louis-San Francisco (1987). Zbl0925.00005MR924157
  17. [17] C. Vogel and M. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. Zbl0847.65083MR1375276
  18. [18] W. P. Ziemer, Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.