Regularization of linear least squares problems by total bounded variation
ESAIM: Control, Optimisation and Calculus of Variations (1997)
- Volume: 2, page 359-376
- ISSN: 1292-8119
Access Full Article
topHow to cite
topChavent, G., and Kunisch, K.. "Regularization of linear least squares problems by total bounded variation." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 359-376. <http://eudml.org/doc/90513>.
@article{Chavent1997,
author = {Chavent, G., Kunisch, K.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {asymptotic analysis; functions of bounded variation; regularization of linear least-squares problems; necessary optimality conditions},
language = {eng},
pages = {359-376},
publisher = {EDP Sciences},
title = {Regularization of linear least squares problems by total bounded variation},
url = {http://eudml.org/doc/90513},
volume = {2},
year = {1997},
}
TY - JOUR
AU - Chavent, G.
AU - Kunisch, K.
TI - Regularization of linear least squares problems by total bounded variation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 359
EP - 376
LA - eng
KW - asymptotic analysis; functions of bounded variation; regularization of linear least-squares problems; necessary optimality conditions
UR - http://eudml.org/doc/90513
ER -
References
top- [1] J.-P. Aubin, I. Ekeland: Applied NonlinearAnalysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
- [2] J. Baumeister: Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987. Zbl0623.35008MR889048
- [3] E. Casas, K. Kunisch, C. Pola: Regularization by functions of bounded variation and applications to image enhancement, preprint. Zbl0942.49014MR1692383
- [4] G. Chavent, K. Kunisch: Convergence of Tikhonov regularization for constrained ill-posed inverse problems, Inverse Problems, 10 ( 1994), 63-76. Boston, 1985. Zbl0799.65061MR1259438
- [5] V. Girault, P. A. Raviart: Finite Elements, Methods for Navier-Stokes Equations, Springer, Berlin, 1984. Zbl0585.65077MR851383
- [6] E. Giusti: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
- [7] C. W. Groetsch: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. Zbl0545.65034MR742928
- [8] A. K. Louis: Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989. Zbl0667.65045MR1002946
- [9] V. G. Mazja: Sobolev Spaces, Springer, Berlin, 1985. MR817985
- [10] W. Rudin: Real and Complex Analysis, McGraw Hill, London, 1970. Zbl0925.00005
- [11] L. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithm, Physica D, 60 ( 1992), 259-268. Zbl0780.49028
- [12] R. Temam: Mathematical Problems in Plasticity, Gauthier-Villars, Kent, 1985. Zbl0457.73017MR711964
- [13] C. Vogel, M. Oman: Iterative methods for total variation denoising, preprint. Zbl0847.65083MR1375276
Citations in EuDML Documents
top- Wolfgang Ring, Structural properties of solutions to total variation regularization problems
- Wolfgang Ring, Structural Properties of Solutions to Total Variation Regularization Problems
- Christian Clason, Karl Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces
- Christian Clason, Karl Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.