Regularization of linear least squares problems by total bounded variation

G. Chavent; K. Kunisch

ESAIM: Control, Optimisation and Calculus of Variations (1997)

  • Volume: 2, page 359-376
  • ISSN: 1292-8119

How to cite

top

Chavent, G., and Kunisch, K.. "Regularization of linear least squares problems by total bounded variation." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 359-376. <http://eudml.org/doc/90513>.

@article{Chavent1997,
author = {Chavent, G., Kunisch, K.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {asymptotic analysis; functions of bounded variation; regularization of linear least-squares problems; necessary optimality conditions},
language = {eng},
pages = {359-376},
publisher = {EDP Sciences},
title = {Regularization of linear least squares problems by total bounded variation},
url = {http://eudml.org/doc/90513},
volume = {2},
year = {1997},
}

TY - JOUR
AU - Chavent, G.
AU - Kunisch, K.
TI - Regularization of linear least squares problems by total bounded variation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 359
EP - 376
LA - eng
KW - asymptotic analysis; functions of bounded variation; regularization of linear least-squares problems; necessary optimality conditions
UR - http://eudml.org/doc/90513
ER -

References

top
  1. [1] J.-P. Aubin, I. Ekeland: Applied NonlinearAnalysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
  2. [2] J. Baumeister: Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987. Zbl0623.35008MR889048
  3. [3] E. Casas, K. Kunisch, C. Pola: Regularization by functions of bounded variation and applications to image enhancement, preprint. Zbl0942.49014MR1692383
  4. [4] G. Chavent, K. Kunisch: Convergence of Tikhonov regularization for constrained ill-posed inverse problems, Inverse Problems, 10 ( 1994), 63-76. Boston, 1985. Zbl0799.65061MR1259438
  5. [5] V. Girault, P. A. Raviart: Finite Elements, Methods for Navier-Stokes Equations, Springer, Berlin, 1984. Zbl0585.65077MR851383
  6. [6] E. Giusti: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  7. [7] C. W. Groetsch: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. Zbl0545.65034MR742928
  8. [8] A. K. Louis: Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989. Zbl0667.65045MR1002946
  9. [9] V. G. Mazja: Sobolev Spaces, Springer, Berlin, 1985. MR817985
  10. [10] W. Rudin: Real and Complex Analysis, McGraw Hill, London, 1970. Zbl0925.00005
  11. [11] L. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithm, Physica D, 60 ( 1992), 259-268. Zbl0780.49028
  12. [12] R. Temam: Mathematical Problems in Plasticity, Gauthier-Villars, Kent, 1985. Zbl0457.73017MR711964
  13. [13] C. Vogel, M. Oman: Iterative methods for total variation denoising, preprint. Zbl0847.65083MR1375276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.