Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems
Walid Ben Youssef; Thierry Colin
- Volume: 34, Issue: 4, page 873-911
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBen Youssef, Walid, and Colin, Thierry. "Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 873-911. <http://eudml.org/doc/194017>.
@article{BenYoussef2000,
author = {Ben Youssef, Walid, Colin, Thierry},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quasilinear symmetric hyperbolic systems; long wave limit; Euler equations; Euler-Poisson systems},
language = {eng},
number = {4},
pages = {873-911},
publisher = {Dunod},
title = {Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems},
url = {http://eudml.org/doc/194017},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Ben Youssef, Walid
AU - Colin, Thierry
TI - Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 873
EP - 911
LA - eng
KW - quasilinear symmetric hyperbolic systems; long wave limit; Euler equations; Euler-Poisson systems
UR - http://eudml.org/doc/194017
ER -
References
top- [1] S. Alinhac and P. Gerard, Opérateurs pseudo-différentiels et thérorème de Nash-Moser. Interéditions/Éditions du CNRS (1991). Zbl0791.47044MR1172111
- [2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear, dispersive Systems. Philos. Trans. Roy. Soc. Lond. A 272 (1972) 47-78. Zbl0229.35013MR427868
- [3] W. Ben Youssef, The global Cauchy problem for Korteweg-de Vries type Systems describing counter-propagating waves. MAB, Université Bordeaux I, preprint (1999).
- [4] W. Ben Youssef, Conservative, high order schemes and numerical study of a coupled system of Korteweg-de Vries type. Université de Bordeaux I, preprint (1999).
- [5] J. L. Bona and H. Chen, Lecture notes in Austin. Texas Institute for Computational and Applied Mathematics (1997).
- [6] J. L. Bona and H. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116 (1998) 191-224. Zbl0962.76515MR1621920
- [7] J. L. Bona, H. Chen and J. C. Saut, personal communications.
- [8] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. Lond. A 278 (1975) 555-604. Zbl0306.35027MR385355
- [9] J. Bourgain, Fourier transform restriction phenomena for certain lattice substes and applications to nonlinear evolution equations. II. The Korteweg-de Vries equation. Geom. Funct. Anal. 3 (1993) 209-262. Zbl0787.35098MR1215780
- [10] S. Cordier and E. Grenier, Quasineutral limit of Euler-Poisson system arising from plasma physics. Université de Paris VI, preprint (1997). Zbl0978.82086MR1759803
- [11] W. Craig, An existence theory for water waves and the Boussinesq and the Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985) 787-1003. Zbl0577.76030MR795808
- [12] T. Colin, Rigorous derivation of the nonlinear Schrodinger equation and Davey-Stewartson Systems from quadratic hyperbolic Systems. Université de Bordeaux I, preprint No. 99001 (1999). Zbl1028.35140MR1932182
- [13] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and nonlinear wave equations. Academic Press (1982). Zbl0496.35001MR696935
- [14] P. Donnat, J. L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics. I. Séminaire équations aux dérivées partielles. École Polytechnique, Palaiseau, exposé No. XVII-XVIII (1995-1996). Zbl0910.35076MR1604366
- [15] J. L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics with rectification. Indiana Univ. Math. J. 47 (1998) 1167-1241. Zbl0928.35093MR1687154
- [16] J.L. Joly, G. Metivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70 (1993) 373-404. Zbl0815.35066MR1219817
- [17] T. Kato, Perturbation theory for linear operators. Grundlehren Math. Wiss. 132 (1966). Zbl0148.12601MR203473
- [18] C.E. Kenig, G. Ponce and L. Vega, Well posedness and scaterring results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 527-620. Zbl0808.35128MR1211741
- [19] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave. Phil. Mag. 39 (1895) 422-443. Zbl26.0881.02JFM26.0881.02
- [20] D. Lannes, Dispersive effects for nonlinear geometrical optics with rectification. Asymptot. Anal. 18 (1998) 111-146. Zbl0931.35091MR1657485
- [21] G. Schneider and C.E. Wayne, The long wave limit for the water wave problem. I. The case of zero surface tension. University of Bayreuth, preprint (1999). Zbl1034.76011MR1780702
- [22] G.B. Whitham, Linear and nonlinear waves. J. Wiley, New York (1974). Zbl0373.76001MR483954
- [23] N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965) 240. Zbl1201.35174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.