Integral equations via saddle point problem for 2D electromagnetic problems
Nathalie Bartoli; Francis Collino
- Volume: 34, Issue: 5, page 1023-1049
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBartoli, Nathalie, and Collino, Francis. "Integral equations via saddle point problem for 2D electromagnetic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1023-1049. <http://eudml.org/doc/194019>.
@article{Bartoli2000,
author = {Bartoli, Nathalie, Collino, Francis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {saddle point problems; radar cross section; integral equation; two-dimensional scattering; asymptotic analysis; algorithms; thin dielectric layer},
language = {eng},
number = {5},
pages = {1023-1049},
publisher = {Dunod},
title = {Integral equations via saddle point problem for 2D electromagnetic problems},
url = {http://eudml.org/doc/194019},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Bartoli, Nathalie
AU - Collino, Francis
TI - Integral equations via saddle point problem for 2D electromagnetic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1023
EP - 1049
LA - eng
KW - saddle point problems; radar cross section; integral equation; two-dimensional scattering; asymptotic analysis; algorithms; thin dielectric layer
UR - http://eudml.org/doc/194019
ER -
References
top- [1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New-York (1972).
- [2] N. Bartoli, Higher Order Effective Boundary Conditions for Perfectly Conducting Scatterers Coated by a thin Dielectric Layer. PhD thesis, INSA, Toulouse (to appear). Zbl1029.78004
- [3] N. Bartoli and A. Bendali, Higher order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer and their boundary element solution (to be submitted). Zbl1029.78004
- [4] A. Bendali, Boundary element solution of scattering problems relative to a gêneralized impedance boundary condition, in Partial differential equations, Theory and numerical solution, W. Jâger, J. Necas, O. John, K. Najzar and J, Stara, Eds. Chapman & Hall/CRC, 406 (1999) 10-24. Zbl0937.78015MR1713870
- [5] A. Bendali and L. Vernhet, Résolution par éléments finis de frontière d'un problème de diffraction d'onde comportant une condition aux limites d'impédance généralisée. C. R. Acad. Sci. Paris, 321 (1995) 791-797. Zbl0837.65130MR1354727
- [6] F. Brezzi and M. Fortin, in Mixed and Hybrid Finite Element Method, volume 15, Springer-Verlag (1991). Zbl0788.73002MR1115205
- [7] D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetrie inconsistent linear Systems, in Proceedings of the Cornélius Lanczos International Centenary Conference, J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds. SIAM, Philadelphia (1994) 267-272. MR1298212
- [8] G. Chen and J. Zhou, in Boundary element Methods. Academic Press, London (1992). Zbl0842.65071MR1170348
- [9] F. Collino and B. Després, Integral equations via saddle point problems for time-harmonie Maxwell's equations. SIAM J. Appl. Math, (submitted). Zbl1016.65110
- [10] D. Colton and R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory, 93, Springer-Verlag (1992). Zbl0760.35053MR1183732
- [11] B. Després, Quadractic functional and integral equations for harmonie wave problems in exterior domains. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 679-732. Zbl0890.65131MR1485752
- [12] V. Frayssé, L. Giraud and S. Gratton, A set of GMRES routines for real and complex arithmetics. Technical report, Cerfacs TR/PA/97/49, Toulouse, France (1997). Zbl1070.65527
- [13] V. Girault and P.A. Raviart, in Finite Element methods for Navier-Stohes Equations, Theory and Algorithms, 5, Springer-Verlag (1986). Zbl0585.65077MR851383
- [14] G.H. Golub and C.F. Van Loan, in Matrix Commutations, 3rd edn., Chap. 9-10, The Johns Hopkins University Press, Baltimore (1996). Zbl0865.65009
- [15] B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal., 164 (1999) 340-355. Zbl0932.35048MR1695559
- [16] Y. Saad, in Iterative methods for sparse linear Systems. PWS publishing (1995). Zbl1031.65047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.