On the asymptotic analysis of a non-symmetric bar
- Volume: 34, Issue: 5, page 1069-1085
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMajd, Abderrazzak. "On the asymptotic analysis of a non-symmetric bar." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1069-1085. <http://eudml.org/doc/194021>.
@article{Majd2000,
author = {Majd, Abderrazzak},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimate; three-dimensional elasticity; non-symmetric heterogeneous rod; asymptotic expansion; coercitivity; homogenized equation; truncated series},
language = {eng},
number = {5},
pages = {1069-1085},
publisher = {Dunod},
title = {On the asymptotic analysis of a non-symmetric bar},
url = {http://eudml.org/doc/194021},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Majd, Abderrazzak
TI - On the asymptotic analysis of a non-symmetric bar
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1069
EP - 1085
LA - eng
KW - error estimate; three-dimensional elasticity; non-symmetric heterogeneous rod; asymptotic expansion; coercitivity; homogenized equation; truncated series
UR - http://eudml.org/doc/194021
ER -
References
top- [1] N.S. Bakhvalov and G.P. Panasenko, Homogenization Averaging Processes in Periodic Media. Nauka, Moscow (1984). (Russian) Kluwer, Dordrecht, Boston and London (1989) (English). Zbl0692.73012MR797571
- [2] G. Fichera, Existence theorems in elasticity. Handbuch der Physic, Band 6a/2, Springer-Verlag, Berlm-Heidelberg-New York (1972).
- [3] G.A. Iosifîan, O.A. Olemik and A.S. Shamaev, Mathematical Problems in elasticity and homogenization. Studies Math. Appl. 26, Elsevier, Amsterdam (1992). Zbl0768.73003
- [4] S.M. Kozlov, O.A. Olemik and V.V. Zhikov, Homogenization of Partial Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1992). Zbl0838.35001
- [5] F. Murat and A. Sili, Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C. R. Acad. Sci. Ser. I 328 (1999) 179-184. Zbl0929.74010MR1669058
- [6] S.A. Nazarov, Justification of asymptotic theory of thin rods Integral and pointwise estimates, in Problems of Mathematical Physics and Theory of Functions, St-Petersbourg University Publishers (1997) 101-152. Zbl0917.35029
- [7] G.P. Panasenko, Asymptotics of higher orders of solutions of equations with rapidly oscillating coefficients. U.S.S.R Doklady 6 (1978) 1293-1296. Zbl0456.35006MR499756
- [8] G.P. Panasenko, Asymptotic analysis of bar Systems. I. Russian J. Math. Phys. 2 (1994) 325 352. Zbl0924.73020MR1330873
- [9] G.P. Panasenko, Panasenko, Asymptotic analysis of bar Systems. II. Russian J. Math. Phys. 4 (1996) 87-116 Zbl0924.73021MR1404503
- [10] G.P. Panasenko and J. Saint Jean Paulin, An asymptotic analysis of junctions of non-homogeneous elastic rods boundary layers and asymptotics expansions, touch junctions. Moscow, Metz, Comp. Math. Phys. 33 (1993) 1483-1508. Zbl0816.73025MR1248155
- [11] J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénisation. Masson, Paris, Milan, Barcelone, Bonne (1992).
- [12] J. Sanchez-Hubert and E. Sanchez-Palencia, Statics of curved rods on account of torsion and flexion. Eur. J. Mech. A/Solids 18 (1999) 365-390. Zbl0938.74040MR1708319
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.