A model problem for boundary layers of thin elastic shells
We consider a model problem (with constant coefficients and simplified geometry) for the boundary layer phenomena which appear in thin shell theory as the relative thickness ε of the shell tends to zero. For ε = 0 our problem is parabolic, then it is a model of developpable surfaces. Boundary layers along and across the characteristic have very different structure. It also appears internal layers associated with propagations of singularities along the characteristics. The special structure of...
In this paper we obtain a limit model for a turbine blade fixed to a 3D solid. This model is a three-dimensional linear elasticity problem in the 3D part of the piece (the rotor) and a two-dimensional problem (the nonlinear shallow shell equations) in the 2D part (the turbine blade), with junction conditions in the part of the turbine blade fixed to the rotor. To obtain this model, we perform an asymptotic analysis, starting with the nonlinear three-dimensional elasticity equations on all the pieces...
In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with as shear correction factor....
In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with 5/6 as shear correction...
We consider the formation of solid drops (“islands”) occurring in the growth of strained solid films. Beginning from a detailed model for the growth of an alloy film that incorporates the coupling between composition, elastic stress and the morphology of the free boundary, we develop an asymptotic description of the shape and compositional nonuniformity of small alloy islands grown at small deposition rates. A key feature of the analysis is a “thin domain” scaling in the island which enables recasting...
We consider coupled structures consisting of two different linear elastic materials bonded along an interface. The material discontinuities combined with geometrical peculiarities of the outer boundary lead to unbounded stresses. The mathematical analysis of the singular behaviour of the elastic fields, especially near points where the interface meets the outer boundary, can be performed by means of asymptotic expansions with respect to the distance from the geometrical and structural singularities....
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients bounded in Here it is shown that, up to a subsequence, may be decomposed as where carries all the concentration effects, i.e. is equi-integrable, and captures the oscillatory behavior, i.e. in measure. In addition, if is a recovering sequence then nearby
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients bounded in Here it is shown that, up to a subsequence, may be decomposed as where carries all the concentration effects, i.e. is equi-integrable, and captures the oscillatory behavior, i.e. in measure. In addition, if is a recovering sequence then nearby
The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...
The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of Γ-convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order ε2α−2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized...
The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems
It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain is localized either at the whole lateral surface of the domain, or at a point of , while the eigenfunction decays exponentially inside . Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too.